

UNDER THE AUSPICES OF THE HELLENIC CHAIRMANSHIP OF THE BLACK SEA ECONOMIC COOPERATION ORGANIZATION

Institute for Studies and Power Engineering

3rd International Scientific Conference on "Energy and Climate Change"

Structure of Electricity Balance of Romania for the year 2020, **Established Based on Optimal Primary Energy Resources Using the Multi-criteria Analysis Model**

Irina Vodă

7, 8 October 2010 **Athens (Greece)**

CONTENT

- 1. Introduction
- 2. How to create a multi-criteria model
 - 2.1. Defining objectives and the field of study
 - 2.1.1. Defining objectives
 - 2.1.2. Coverage of electricity demand in 2020
 - 2.1.3. Defining the field of study
 - 2.2. Inventory Analysis
 - 2.3. Impact Analysis
 - 2.4. Technical and economic analysis
 - 2.5. Multi-criteria Analysis
 - 2.6. Sensitivity analysis and robustness analysis
- 3. The structure and the results obtained with multi-criteria model using "Eclipse"
- 4.Conclusions

1. INTRODUCTION

- In this article the authors explains how to build a multi-criteria model and the results of using it as a model for analysing the optimal electricity balance in Romania up to 2020, from the point of view of primary energy mix used to produce electricity.
- The model has gone from setting the electricity needs for a particular year and then settled its coverage by alternative scenarios.
- For each primary energy source analysed (natural gas, coal, uranium, biomass, wind, large hydro, small hydro), for environmental component it was applied the life cycle analysis method (LCA). We carried out an inventory, which identified the main pollutants for each primary energy source. It was developed, also, an environment impact assessment by which indicators were calculated for each impact class.
- It was calculated the cost of investment, the cost of operating, the cost of fuel and finally, calculate the total expenditure. To select the optimal scenario, the economic recovery cost was used as main criterion.
- Through this model the user can identify the optimal scenario for covering the electricity demand (balance) as from environment and technical/economic point of view.

2. HOW TO CREATE A MULTI-CRITERIA MODEL

2.1. Defining objectives and the field of study:

2.1.1. Defining objectives

The main objective of the analysis was to develop a multi-criteria model that might to optimal load the electricity balance of Romania (in terms of primary resources used for electricity generation) in 2020, in terms of environmental, technical and economic criteria.

2.1.2. Coverage of electricity demand in 2020

- For this article, we will determine the particular needs of electricity in 2020. Of the scenarios made, for further development we chose the scenario under which the final electricity consumption in 2020 will be 6.3 million toe (73.3 TWh). The total electricity demand was calculated as the sum of the final electricity consumption, ancillary services consumption in networks and was obtained (taking into account specific documents for each parameter) value of 85 TWh in 2020 perspective.
- To meet demand the electricity (85 TWh) we have established different scenarios that would achieve the electricity balance of different loading. In making these scenarios we considered technological restrictions (conditions imposed) the various international engagement assumed by Romania, and some programs being implemented with government support. Under these conditions the imposed structure of electricity generation is as follows:

The structure imposed on electricity production

Total production, including:	85 TWh
- nuclear	20.2 TWh
- renewables	30.8 TWh
- thermo	34 TWh

 By combining the ways of producing electricity from renewable sources and thermo resulted eight scenarios and the quantities of electricity made by each chains within each scenario are presented in the table.


The amount of electricity carried by chains in the scenarios (TWh)

Energy chains	S_1	S_2	S_3	S_4	S ₅	S_6	S_7	S_8
Uranium	20.2	20.2	20.2	20.2	20.2	20.2	20.2	20.2
Large hidro	25	25	25	25	25	25	15.4	15.4
Small hidro	0	0	1.2	1.2	0.5	0.5	0	0
Biomass	5.8	5.8	4.6	4.6	0	0	15.4	15.4
Energy wind	0	0	0	0	5.3	5.3	0	0
Coal	17	25.5	17	25.5	17	25.5	17	25.5
Natural Gas	17	8.5	17	8.5	17	8.5	17	8.5

2.1.3. Defining the field of study

- First we established the field of study of each energy chains that will be part of the energy scenarios achieved. Then, field study was realized for each scenario separately. Given that the functional unit is defined on the basis of three units: the function, time and product is considered as the functional unit: Romania's electricity needs in 2020 (85 TWh).
- All scenarios are compared to this year's level. In conclusion, it will select the energy scenario which will cover energy needs with minimal environmental impact and minimum cost of production.
- For each scenario, electricity demand coverage in 2020 (85 TWh), we have made detailed study fields. For example the diagram shows the results for scenario 5 (results from the analysis, next figure).

The field of study for scenario 5

2.2. Inventory Analysis

The inventory analysis was performed for each scenario, the emissions are reported according to the contribution of each chain to produce electricity. The total emissions in each scenario are presented in the table.

The pollutants for each scenario (thousand t/scenario)

Emissions	Sı	S2	Sз	S4	S5	S6	S 7	Ses
CO ₂	28,363	32939	28,828	32,831	28,358	32,361	29,692	33,695
CO	16.473	14.610	16.263	14.401	15.408	13.546	18.053	16.191
NO	0.721	0.363	0.721	0.363	0.721	0.363	0.721	0.363
NНз	2 .224	2.883	2.182	2.841	2.020	2.679	2.562	3.221
CH ₄	90.687	64.898	90.661	64.872	90.061	64.272	89.977	64.188
$N0_2$	82.082	102867	81.096	101.881	77.149	97.934	89.682	110.467
Dust	162971	239166	162931	239.127	162.649	238.844	163.044	239.240
Formaldehyde	0.145	0.072	0.145	0.072	0.145	0072	0.145	0.072
(CH ₂ O)	0.145	0.073	0.145	0.073	0. 145	0.073	0.145	0.073
COD	1 .209	0.641	1.208	0.640	1.203	0.636	1.217	0.650
SO ₂	123.727	177447	123346	177.065	121.775	175.495	126.587	180.306
N ₂ O	0.780	0.634	0.756	0.610	0.664	0.518	0.968	0.822
Lead	0.058	0.031	0.058	0.031	0.058	0.031	0.059	0.031
A rse nic	0.003	0.004	0.003	0.005	0.003	0.005	0.003	0.005
Barium	0 .008	0.011	0.008	0.011	0.008	0.011	800.0	0.011
Chromium	0 .005	0.007	0.005	0.007	0.005	0.007	0.005	0.007
Cobalt	0	0.001	0	0.001	0	0.001	0	0.001
Copper	0.002	0.004	0.002	0.004	0.002	0.004	0.002	0.004
Molybdenum	0.001	0	0	0	0	0	0	0
Nickel	0 .004	0.006	0.004	0.006	0.004	0.006	0.004	0.006
Selenium	0.007	0.011	0.008	0.011	0.007	0.011	0.007	0.011
Vanadium	0 .007	0.010	0.007	0.010	0.005	0.010	0.007	0.010
NH4	0.399	0.597	0.399	0.59/	0.399	0.597	0.399	0.597
Hydrogen								
Chloride (HCl)	1 .229	1.229	0.984	0.984	0.039	0.039	3.183	3.183
Hydrogen	0 .004	0.004	0.004	0.004	0,004	0.004	2.413	2.413
Fluoride (HF)		0.000				0.0 0 .		
Nitric acid	0.002	0.002	0.002	0.002	0	0	0.006	0.006
Isopr en	123.172	123172	97.732	97.732	0	0	326.692	326.692

2.3. Impact Analysis

The table shows a comparison between the calculated impact indicators for each scenario.

The impact indicators for each scenario

Impactindicators	S 1	S_2	S_3	S 4	S	S	S_7	S 8
ADP[tequivalentSb]	272 ,738	300,524	250,785	278 ,57 2	167,510	1 95,297	448 ,360	476 ,147
GWP [thou.	31,083	35,516	30,968	35,401	30,457	34,890	31,883	36,316
t equivalent CO2]								
AP [t equivalent SO ₂]	193 ,074	271,128	192,055	270 ,110	187,938	265,993	200,846	278 ,900
POCP [t equivalent ethylene]	143 ,316	146,533	115,534	118 ,75 1	8,792	12,009	365 ,544	368,761
EP [t equivalent PO ₄ ³]	11,760	15,044	11,617	14,901	11,047	14,331	12,867	16,151
HTP [thou	817 .495	997.400	816. 181	996 .087	8 10 .81 7	9 90.722	827 .372	1.007
t equivalent 1,4-								
dichlorobenzene]								
FAETP [t equivalent 1,4-	13,171	1 8,141	13,171	18, 141	13,175	18,145	13,165	18,135
dchlorobenzene]								
MAETP [t equivalent 1,4-	837 ,555	590,985	875,604	590,989	837,580	5 91,009	837 ,480	590,910
dichlorobenzene]								
TETP [t equivalent 1,4-	5, 744	6,601	5,744	6,601	5,744	6,602	5,744	6,601
dichlorobenzene]								

2.4. Technical and economic analysis

Starting from the amount of electricity produced for each scenario we determined for each chain the power installed in each scenario for 2020. Taking into account the duration of the investment, the duration of exploitation and the duration of the study, were determined the investment costs, operating costs, fuel costs, resulting the total expenses. We used three cost scenarios eco-taxes. The table below shows the total expenditure eco-tax. It is noted that the scenario that requires the highest total expenditure is the scenario 7.

The total expenditure with eco-taxes for the energy chains and for the scenarios [million Euro]

Total exprediture withoutwith ecotax	S ₁	S_2	S_3	S ₄	S_5	S ₆	S ₇	S ₈
Total expenditure without ecotax	4,397	4,305	4,005	3,913	2,500	2,408	7,531	7,439
Total expenditure with minimum ecotax	4,658	4,629	4,264	4,235	2,753	2,723	7,804	7,774
Total expenditure with medium ecotax	5,389	5,525	4,996	5,132	3,450	3,586	8,559	8,695
Total expenditure with maximum ecotax	7,745	8,616	7,335	8,206	5,720	6,592	11,044	11,915

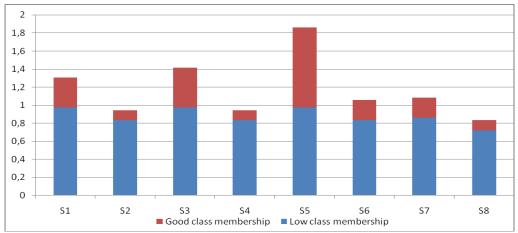
- The economic cost recovery was chosen as the criterion of selection the technical and economic scenarios.

The economic cost recovery for the scenarios [Euro/MWh]

E conomic cost	S_1	S_2	S_3	S_4	S ₅	S_6	S ₇	S ₈
re co v e ry(E C R)								
ECR without	65.7	65.4	61.3	60.9	43.8	434	101.4	101.1
e co ta x								
ECRwith	69.2	64.3	64.8	467	467	47.2	1047	105.1
minimum e cotax								
ECR with medium	79.9	730	75.3	55.2	55.2	57.6	1136	1160
e co ta x								
ECRwith	1164	1007	111.7	82.1	821	93.1	1430	1540
maxim um ecotax								

2.5. Multi-criteria Analysis

- The previous performed steps allowed us to obtain information about energy chains used to create scenarios.
 Further, we will achieve global comparison between scenarios.
- Evaluations were normalized after each criterion and were established in the class memberships good/low.
- We obtained the normalized matrix, based on which energy scenarios were evaluated by each set of criteria
 to finally obtain a global evaluation of energy scenarios.


The normalized matrix

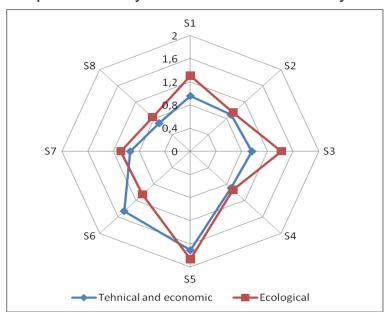
CRITERIA	S_1	S_2	S_3	S_4	S ₅	S_6	S_7	S_8
		Ec	ol ogi cal					
ADP[t equivalent Sb]	0.573	0.631	0.527	0.585	0.352	0.410	0.942	1.000
GWP [thou. t equivalent CO2]	0.856	0.978	0.853	0.975	0.839	0.961	0.878	1.000
AP [tequivalent SO2]	0.692	0.972	0.689	0.968	0.674	0.954	0.720	1.000
POCP [tequivalent ethylene]	0.389	0.397	0.313	0.322	0.024	0.033	0.991	1.000
EP [t equivalent PO4 ³]	0.728	0.931	0.719	0.923	0.684	0.887	0.797	1.000
HTP [th ou. t eq ui val ent 1, 4 - di chl orob en zene]	0.812	0.990	0.810	0.989	0.805	0.984	0.821	1.000
FAETP [t equivalent 1,4 - dichl orob en zene]	0.726	1.000	0.726	1.000	0.726	1.000	0.726	0.999
MAETP [t equivalent 1,4-dichloroben zene]	0.957	0.675	1.000	0.675	0.957	0.675	0.956	0.675
TETP [t equivalent 1,4-dichlorobenzene]	0.870	1.000	0.870	1.000	0.870	1.000	0.870	1.000
		Tech n i cal	a nd eco n	om i c				
Investment expenses (thou. Euro)	0.928	0.979	0.937	0.988	0.949	1.000	0.854	0.905
O perating expenses (thou. Euro)	0.942	0.972	0.938	0.969	0.925	0.956	0.970	1.000
Fuel expenditure (thou. Euro)	0.563	0.548	0.508	0.494	0.299	0.284	1.000	0.985
Economic recovery cost without cost to emissions of CO ₂ . SO ₂ and NO _x (Euro/ MWh) (at "a" =discount rate = 8%)	0.856	0.886	0.842	0.871	0 771	0.801	0971	1.000

Referring to the environmental criteria, scenario 5 presents the highest value and is considered the best scenario, and scenario 8 is the worst scenario.

The evaluation of energy scenarios using environmental criteria

- Regarding the technical and economic criteria, scenario 5 presents the highest value and is, therefore,

the best scenario.



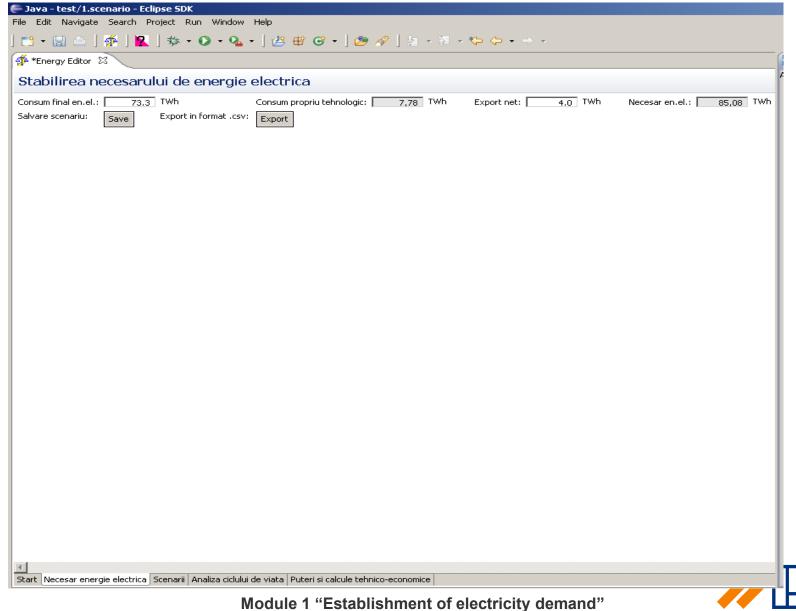
The evaluation results were represented by families of criteria set by a radar chart.

The global assessment of energy scenarios

- Observe the diagram above that scenario 5 is the scenario that the highest values recorded in terms of family environmental criteria and in terms of family economic and technical criteria, so scenario 5 is the optimal scenario.

2.6. Sensitivity analysis and robustness analysis

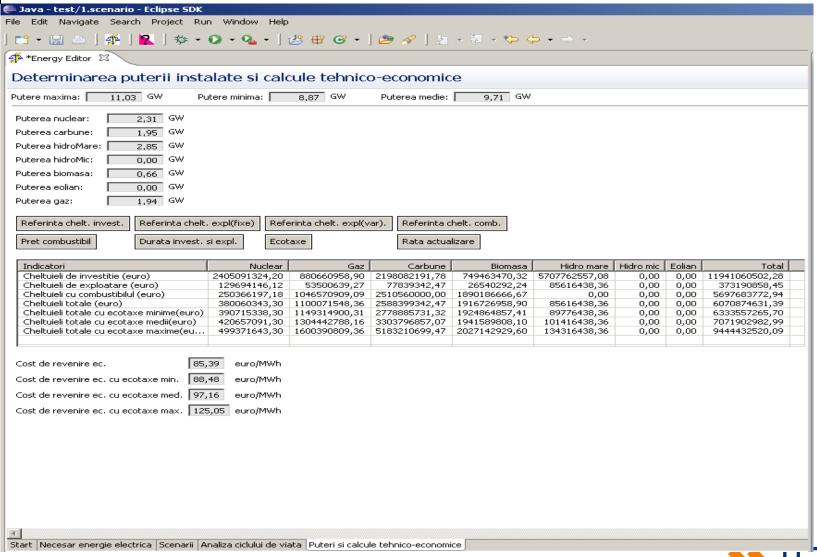
- The sensitivity analysis was performed taking into account both the change in the objective indicators (share of families of criteria etc.) and subjective indicators of change (fuel prices, introduction eco-taxes, the discount rate).
- The robustness analysis revealed that the chosen solution (scenario 5) remains the best.


3. THE STRUCTURE AND THE RESULTS OBTAINED WITH MULTI-CRITERIA MODEL USING "ECLIPSE"

- In the previous chapter has presented the multi-criteria model as was done in Excel. Transposition was done in the "Eclipse" program (using Java) in order to quickly select an optimal energy scenario in detail using other values, where modification is done in a long time and with lower performance. Eclipse program offers an attractive graphical interfaces and database created multi-criteria model can be enriched by providing greater opportunities for simulation and interpretation of different data loads.
- The multi-criteria model developed consists of five modules, named after the steps necessary to achieve the program (and have been detailed in part 2 of article in the creation phase of the model), as follows:
 - 1. Establishment of electricity demand;
 - 2. Scenarios;
 - 3. Life Cycle Analysis;
 - 4. Powers, technical and economic calculations;
 - 5. Evaluation scenarios.

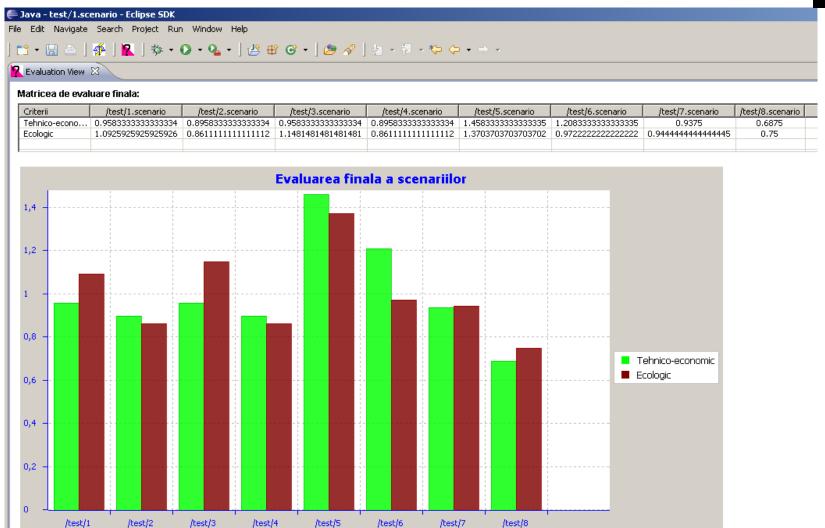
These modules are added to a home page, from which the user has direct access to the modules listed above.

🚐 Java - test/1.sce	enario - Eclipse SDK
File Edit Navigate	Search Project Run Window Help
🌁 *Energy Editor 🛭 Σ	3
Stabilirea so	enariilor de acoperire a necesarului de energie electrica
▼ Calcul contribu	utie surse energie electrica crica
Necesarul de e	nergie electrica este de 85,08 TWh
Productie totala e	nergie nucleara 20.2 TWh
Energia electrica d	din surse regenerabile este de 30,81 TWh
Energia electrica c	lin surse termo este de 34,07 TWh
	operire a necesarului de energie electrica
Scenarii energie ele	ctrica
Scenarios:	scenario 1
Nuclear:	20.2 TWh
Surse regenerabile	e:
Hidro mare	e: 25 TWh
Hidro mic:	o TWh
Biomasa:	5.81 TWh
Eolian:	o TWh
Solara:	o TWh
Termo:	
Gaz:	17.03 TWh
Carbune:	17.04 TWh
Pacura:	0 TWh
4	
	jie electrica Scenarii Analiza ciclului de viata Puteri si calcule tehnico-economice
	Module 2 "Scenarios"



🚝 Java - test/	= Java - test/1.scenario - Eclipse SDK										
File Edit Navigate Search Project Run Window Help											
## *Energy Editor											
Analiza ciclului de viata											
Filiere energetice:											
	Biomasa Uraniu Hidro ma	are Hidro mic Eolian	Grafice Total								
` `	pe scenariu):			44444 700000000000			704 00050000004			104405 045000000	
CO2:	2.926398889E7	tone .	CO:	16664.783000000003	tone .	NO:	721.2205000000001	tone .	502:	124495.21629999999	tone .
NH3:	2224.5298	tone .	CH4:	90878.71909999999	tone .	NO2:	82657.8501	tone .	N2O:	790.0387649999999	tone .
praf:	163162.66389999999	tone .	CH2O:	144.755	tone .	COD:	1208.7211102	tone .	Clor-benzen:		tone .
Pb:	57.2405142	tone .	Fenol:	0.338417089	tone .	Pbsol:	58.4333142	tone .	antimoniu:	0.0700344	tone .
arsenic:	0.8434799999999999	tone .	bariu:	0.21811199999999997	tone .	beriliu:		tone .	cadmiu:	0.06935279999999999	
crom:	1.0087679999999999	tone	cobalt:	0.1170648	tone	cupru:	0.398736	tone	mercur:	0.623664	tone
molibden:	0.6492239999999999	tone	nichel:	1.017288	tone	seleniu:	6.91824	tone	vanadiu:	1.499519999999999	tone
NH4:	398.736	tone	antimoniu sol:		tone	arsenic sol:	2.215199999999999	tone	bariu sol:	7.446479999999999	tone
beriliu sol:			cadmiu sol:	0.1675032	tone	crom sol:	3.78288	tone	cobalt sol:	0.79236	tone
cupru sol:	1.94256	tone	mercur sol:	0.00282864	tone		0.6628559999999999	tone	nichel sol:	2.6582399999999997	tone
seleniu sol:	0.175512	tone	vanadiu sol:	5.40168	tone	HCl:	1244.3917999999999	tone	HF:	5.711610705	tone
H25:	1.283429E-4	tone	Isoprene:	123171.99999999999	tone	azotat:	0.001075431	tone	acid azotic:	2.39953	tone
subst. azotice	=	tone	benzen:	0.0	tone	rn222:	0.0	tone	nitrati:	0.0	tone
fosfati:	0.0	tone	ioni Pb:	0.0	tone	ioni Hg:	0	tone	ioni Cu:	0.0	tone
ioni Cr3:	0.0	tone	ioni Cr4:	0.0	tone	ioni Cd:	0.0	tone	ra226:	0.0	tone
Clase de im	pact(total pe scenariu):										
ADP:	272770.9455334921	t echiv. antimoniu	GWP:	3.1417955067550004E7	t echiv. CO2	AP:	194283.69679800002	t echiv. 502	POCP:	143421.62261319996	t echiv, eten
EP:	11834.957331348478	t echiv. PO4	HTP:	818599.9505715669	t echiv. 1,4-DCB	FAETP:	13179.548600528	t echiv. 1,4-DCB	MAETP:	837652.0247785979	t echiv. 1,4-DCB
TETP:	5744.195369003057	t echiv. 1,4-DCB									
1											
Start Necesar	energie electrica Scenarii	Analiza ciclului de viat	a Puteri si calo	ule tehnico-economice							

From Module 3, The inventory analysis and the impact assessment on all scenarios



From Module 4, The installed capacity and technical and economic calculations

Scenarii

4. CONCLUSIONS

- The implementation of this model enabled the identification of the optimal scenario to cover the balance of electricity in terms of environmental criteria and in terms of technical and economic criteria.
- → Following analysis, scenario 5 is the optimal scenario to cover the electricity needs of 85 TWh in 2020. It was called "Wind Natural gas Scenario. The loading of this scenario is as follows:
 - four nuclear groups, provide 20.2 TWh;
 - wind energy provides 5.3 TWh;
 - large hydro provides 25 TWh;
 - small hydro provides 0.5 TWh;
 - thermo energy is achieved in equal proportion of coal and gas, each making one 17 TWh.
- Since the program supports changes to many parameters, it allows the user achieve many simulations and data interpretation (in a very short time) that can be used in determining strategies for energy sector development.
- The program also addressed to less initiated persons into multi-criteria model, encompassing a part of graphics makes it possible to interpret the data in an easier manner. It presents a tool that allows exporting data in Excel format.

Thank you for your attention!

Irina Vodă
Institute for Studies and Power Engineering (ISPE)
Energy and Environment Division

1-3 Lacul Tei Blvd. 020371 Bucharest Romania

ph: + 4021 2061309 e-mail: irina.voda@ispe.ro www.ispe.ro

