

Simulation of energy reduction in CO₂ absorption using split-stream configuration

by

Lars Erik Øi and Vladyslav Shchuchenko Telemark University College, Norway presented at 4th International Scientific Conference on Energy and Climate Change

Athens, Greece, 13-14 October 2011

Telemark University College BACKGROUND

• At Telemark University College, Aspen HYSYS has been used for simulation of CO_2 removal from atmospheric exhaust by absorption in amine. The process has been cost estimated and optimized.

• Lars Erik Øi is Master in Chemical Engineering from NTNU in Trondheim and is Associate Professor and PhD student in CO₂ removal.

• Vladyslav Shchuchenko is Bachelor in Mechanical Engineering from NTUU "KPI" in Kiev, and Master in Process Technology (2011) from Telemark.

OUTLINE

- The most standard method for CO_2 removal from atmospheric exhaust is by absorption in an amine based solution (MEA = MonoEthanolAmine).
- The desorption (stripping of CO₂ from the amine) has a high thermal energy demand (4.2 MJ/kg CO₂).
- This energy can be reduced by changing the process stream configuration (e.g. split-stream or vapour recompression).
- What is the potential in energy reduction?
- Is split-stream a cost efficient solution?

FLOWSHEET FOR STANDARD PROCESS

Aspen HYSYS FLOWSHEET STANDARD CO₂ REMOVAL

PROCESS SIMULATION

Simulation of CO₂ removal has been performed with

• Aspen HYSYS amine package with Kent Eisenberg equilibrium model.

Typical specifications for exhaust gas from a natural gas based combi-cycle power plant:

- 400 MW
- 3.71 % CO₂ in exhaust gas
- 85 % CO₂ removal

Monoethanol amine (MEA, 30 wt-%) as solvent

FLOWSHEET FOR SPLIT-STREAM PROCESS

©HiT-2011

SPECIFICATIONS

Telemark University College

Specifications	Without split-stream	With split-stream
Inlet gas temperature, °C	40	40
Inlet gas pressure, bar	1,11	1,11
Inlet gas flow, kgmole/h	110000	110000
Lean amine rate, kgmole/h	165000	103500
CO ₂ in inlet gas, mole-%	3,7	3,7
CO ₂ in lean amine, mass-%	5,5	5,5
Number of stages in absorber	14 (15 % E _{MURPHREE})	24 (semilean to 21)
Desorber pressure, bar	2	2
Heated rich amine temperature, °C	104,2	96,6
Number of stages in stripper	10+Condenser+Reboiler	6+Condenser+Reboiler
Reboiler temperature, °C	120	120
Semilean amine rate, kgmole/h	-	100000
MEA content lean/semilean amine, mass-%	29	29/28
CO ₂ in semilean amine, mass-%	-	9,0

下のたたの法 Aspen HYSYS FLOWSHEET Telemark University College FOR SPLIT-STREAM

下のた子会を Telemark University College RECOMPRESSION MODIFICATION

After the reboiler, the lean amine is deprezzurized. The vapour is comressed and returned to the stripper.

From Karimi et al. (2010)

EARLIER RESULTS

- In earlier work (at Telemark University College and in the literature) it has been shown that the heat demand can be reduced from about 4.2 MJ/kg CO₂.
- to 3.0 MJ/kg CO2 using split-stream configuration.
- to 2.6 MJ/kg CO₂ using vapour recompression with addition of mechanical work for recompression.

Results from simulations of a combination of vapour recompression and split-stream have not been published earlier.

VAPOUR RECOMPRESSION COMBINED WITH SPLIT-STREAM CONFIGURATION

丁のたず新 CALCULATION SEQUENCE

Telemark University College

• The number of stages in the absorber was increased until problems with convergence occured. This is expected to minimize the reboiler duty. The feed stage for the semi-lean stream was also selected as the one giving minimum reboiler duty.

• A minimum temperature difference of 5 K in the heat exchangers was achieved by adjusting the temperature on the stream to the desorber.

• Recycle blocks are located on lean amine streams before the absorption column and on the recompression stream before the desorber column. In some cases, the iterations were performed by guessing tear streams by trial and error until the difference in CO_2 concentration was satisfactory.

下のたうない ASPEN HYSYS FLOWSHEET OF Telemark University College VAPOUR RECOMPRESSION WITH SPLIT-STREAM FROM THE MIDDLE OF THE DESORBER

下のたうが、ASPEN HYSYS FLOWSHEET OF Telemark University College VAPOUR RECOMPRESSION WITH SPLIT-STREAM FROM THE BOTTOM OF THE DESORBER

ASPEN HYSYS RESULTS FROM DIFFERENT CONFIGURATIONS

	Reboiler Duty [MJ/kg CO2]	Compressor duty, [MW]
Base case CO ₂ removal	4.23	0
Split-stream configuration	3.04	0
Standard vapour recompression	2.64	3.9
Vapour recompression with split-stream from the middle of the desorber	2.59	2.8
Vapour recompression with split-stream from the bottom of the desorber	2.45	1.2

SPECIFICATIONS FOR ECONOMIC EVALUATIONS

Cost of electricity (mechanical work): • 0.05 EURO/kWh Cost of steam (heat to reboiler): • 0.013 EURO/kWh

The ratio between electricity and steam cost is about 4. This is reasonable in a steam based power plant with a conversion efficiency from steam to electricity of about 25 %.

TOTAL ENERGY COST WITH DIFFERENT CONFIGURATIONS

	Heat/Work	Total energy
	[MJ/kg CO2]	cost
	/[MW]	[MEURO/yr]
Base case CO ₂ removal	4.23/0.0	18.54
Split-stream configuration	3.04/0.0	13.56
Standard vapour recompression	2.64/3.9	13.15
Vapour recompression with split-stream from the middle of the desorber	2.59/2.8	12.46
Vapour recompression with split-stream from the bottom of the desorber	2.45/1.2	11.15

EVALUATION OF THE y College RESULTING ENERGY CONSUMPTIONS IN THE DIFFERENT CONFIGURATIONS

Taking into account <u>only</u> energy consumption by the process, the vapor recompression modification with split-stream from the bottom of the desorber is the most efficient.

Considering also increased complexity and capital cost of the removal plant the vapor recompression configuration seems to be the best solution.

There is however a potential for improvements by further optimization of the process.

FURTHER OPTIMIZATION

Only some examples of split-stream configurations with vapour recompression has been evaluated.

Parameters like the ratio between lean and semi-lean flow-rate and the semi-lean removal stage from the desorber can be further optimized.

The economical comparison is sensitive to the large uncertainties in the cost estimates. Especially the energy cost is critical.

SUMMARY

A standard amine based CO_2 removal process and some split-stream and vapour recompression configurations have been simulated in Aspen HYSYS.

With 85 % CO_2 removal, it is possible to achieve an energy consumption of 2.5 MJ/kg CO_2 when using a combination of split-stream and vapour recompression.

Capital cost is higher for the complex split-stream processes. The complex split-stream alternatives becomes more attractive when energy cost increases.

The End