

4th International Scientific Conference on "Energy and Climate Change", 13-14 October 2011, Athens, Greece

Selecting AMS as the appropriate multi-criteria evaluation method for climate change policy portfolios

Dr. Popi KONIDARI Research Fellow of KEPA

lational and Kapodistrian University of Athens – Energy Policy and Development Centre

Structure

- Introduction
- Comparison of multi-criteria evaluation methods
 - Objectives
 - Structural background
 - Methodology
 - Advantages and disadvantages for the user
 - Applications
- Conclusions

Introduction

Problem

- Development and implementation of policy instruments
 - Mitigation of greenhouse gas emissions
 - Adaption of human activities towards climate change effects
- Evaluation of policy mixtures
- Need to understand
 - Aggregate performance of a policy instrument
 - Climate Policy interactions
- Outcome of efforts
 - Identification of optimum alternative

Multi-criteria Decision Analysis

Used extensively for evaluations
 Exhibits large number of methods
 Adopted rule "Facilitation of the decision maker according to needs"

Framework of comparison

- Ninety papers exploited
- Seven MCDA methods evaluated qualitatively
 - AHP Analytical Hierarchy Process
 - F-AHP Fuzzy AHP
 - **MAUT** Multi-Attribute Utility Theory
 - **SMART** Simple Multi-Attribute Ranking Technique
 - **AMS** Acronym for combination of AHP, MAUT and SMART
 - **ELECTRE** Elimination Et Choix Traduisant le REalite
 - **PROMETHEE** Preference Ranking Organization METHod of Enrichment Evaluation

Objectives

Outcomes Set of criteria/sub-criteria Ability to incorporate model outcomes

Structural background

 Mathematical background
 Weight coefficients, parameters, thresholds, indexes

Methodology

- Understanding the problem
- Selecting criteria/sub-criteria and determining their weight coefficients
- Measurement scales and assessment of the performance
- Sensitivity analysis

Advantages-disadvantages for user

Ease of use Low requirements on time and efforts Available software

Applications

	АНР	F-AHP	MAUT	SMART	AMS	ELECTRE	PROMHTHEE
Cases	5	2	0	0	4	4	4

- RES Policy goals Rentaiwable energy sources for Taiwan Subsidy schemes for PV technology in Cytimes gy alternatives for Transport policy options
- Options in energy, transportations, forestry in Peru

Low-carbon development scenarios in Bangkok (Thailand)

Comparison

Qualitative scale High (+, 0, -) Moderate (+, 0, -) Low (+, 0, -)

Results of comparison (1/3)

	AHP	F-AHP	MAUT	SMART	AMS	ELECTRE	PROMETHEE
Objectives							
Outcomes	H+	H+	<i>H</i> +	H+	H+	H-	Н-
Set of criteria/sub- criteria	L-	L-	L-	L-	H+	L-	L-
<i>Ability to incorporate model outcomes</i>	H 0	H 0	H 0	L-	НО	L-	L-
Structural background							
Mathematical background	Н-	L-	H-	М+	H-	H+	<i>M</i> +
Weight coefficients, parameters, thresholds, indexes	H-	M-	<i>M</i> +	<i>M</i> +	H+	<i>M</i> +	M+

Results of comparison (2/3)

	AHP	F-AHP	MAUT	SMART	AMS	ELECTRE	PROMETHEE
Methodology							
Understanding the problem	H+	H+	М-	М+	H+	М-	<i>M</i> +
Selecting criteria/sub- criteria and determining weight coefficients	H+	H+	<i>M</i> -	<i>M-</i>	H+	М-	<i>M</i> -
Measurement scales and assessment of performance	H-	H-	H 0	<i>M</i> +	H+	<i>M</i> -	<i>M</i> +
Sensitivity analysis	H-	L+	H 0	<i>M</i> +	H+	М+	<i>M</i> +

Results of comparison (3/3)

	AHP	F-AHP	MAUT	SMART	AMS	ELECTRE	PROMETHEE
Advantages – Disadvantages for the user							
Ease of use	H-	М-	H+	H+	<i>H</i> +	<i>M</i> +	М-
<i>Low requirements on time and money</i>	М-	L-	H-	Н-	H+	М-	<i>M</i> -
Software	H+	L+	H 0	М-	М-	H-	H-
Applications	H+	L+	L +	L -	M -	М -	M 0

Conclusions

Most appropriate MCDA method: AMS

- Aggregate evaluation of performance of policy instruments
- Evaluation of policy interactions
- Complete criteria-tree
- Incorporation of model outcomes
- Easy to use

