Deutsches BiomasseForschungsZentrum German Biomass Research Centre

3rd International Scientific Conference Energy and Climate Change

Contribution of biomass to decentralised energy supply with the objective of public services and supply security for peripheral regions in Germany

a project financed by the German Federal Government, 2009

Thilo Seidenberger, Cornelia Viehmann, Daniela Thrän, Vanessa Richarz 7th to 8th October, Athens

Deutsches BiomasseForschungsZentrum gemeinnützige GmbH, Torgauer Str. 116, D-04347 Leipzig, www.dbfz.de

Agenda

- 1. Introduction relevance of bioenergy for Germany
- 2. Introduction main questions of the presented topic
- 3. Project structure
- 4. Peripheral regions in Germany
- 5. Energy demand of reference regions
- 6. Used renewable energy technologies
- 7. Scenarios of self supply
- 8. Summary and discussion
- 9. Further activities of DBFZ in projects with regional context

Final energy production of renewable energy in Germany in 2009

Introduction in the topic

Subject

Use of renewable energy for peripheral regions with target of self-supply.
Focus: Use of bioenergy from regional sources.

Main questions

- Which german regions (counties) are "peripheral" and can be used as reference regions?
- What is the energy demand of this regions?
- Which bioenergy techniques can be used?
- Which kind of scenarios shall be used to take a look in a possible future?
- For which kind of final energy (electricity, heat, liquid fuels) a self-supply can be achieved in the reference regions?

financed by:Image: State of the stat

Project structure - overview -

Project parts to calculate the self-supply with renewable energy.

Peripheral regions in Germany; the 3 reference regions

DBFZ

6

3 reference regions - characterization -

	Cham	Kyffhäuser	Uecker-	
parameter			Randow	
Spatial aspects				
- Area	151,187 ha	103,514 ha	162,428 ha	
- Population density	0.86 inh./km ²	0.83 inh./km ²	0.47 inh./km ²	
Bioenergy aspects				
- Share of arable land	21%	59%	35%	
- Share of forest area	43%	23%	32%	
- livestock	0.6 LUs/ha	0.8 LUs/ha	0.3 LUs/ha	
Socio-economic aspects				
- Population 2007	129,817	85,882	75,842	
- Population 2020	128,537	72,486	68,379	
- Gross value added	23,092 €/inh.	13,886 €/inh.	13,468 €/inh.	
- Energy demand 2007	17.4 PJ	7.4 PJ	5.6PJ	
- Energy demand 2020	18.5 PJ	6.7 PJ	5.2 PJ	
- Energy demand per capita 2007	134 GJ/inh.	86 GJ/inh.	73 GJ/inh.	
- Energy demand per capita 2020	144 GJ/inh.	79 GJ/inh.	77 GJ/inh.	

3 reference regions - energy demand -

- Definition of sector-specific indicators to calculate the energy demand. (kWh_{el} per person, kWh_{th} per household etc.)
- With these indicators, the region specific data and a trend projection to 2020 the final energy demand is calculated for each region.

Results:

Cham have the highest final energy demand because of

- \rightarrow highest number of inhabitants (130,000 to 87,000 and 76,000) and
- \rightarrow more industry than the other two regions

Following renewable energy technologies were selected for scenario analysis

	Electricity		Heat		Liquid biofuels	
Technology chains	Installed	Final	Installed	Final	Installed	Final
reemology chams	capacity	energy	capacity	energy	capacity	energy
	[kW _{el}]	[MWh _{el} /a]	[kW _{th}]	[MWh _{th} /a]	[kW _{th}]	[MWh _{th} /a]
Small scale heating + local heating grid	-	-	100	430	-	-
Agricultural biogas plant	500	3,900	448	3,494	-	-
Biomass CHP + ORC	1,000	7,800	7,500	33,000	-	-
Biomass gasification + CHP	500	3,750	1,020	4,080	-	-
Biogas plant (treatment) + fuel cell	1,300	10,000	-		-	-
Biodiesel	-	-	-	-	3,750	34,280
Bioethanol facility + biogas plant	2,700	22,880			5,850	57,600
Biomethane (from the bio-chemical route)	-	-	-	-	11,530	83,000
Biomethane (from the thermo-chemical route)	-	-	1,900	15,600	83,300	600,000
Heat pump	-	-	15	14	-	-
Solar collector (6 m ²)	-	-	1.4	2	-	-
Photovoltaic module (20 m ²)	2	2	-	-	-	-
Onshore wind energy plant	2,000	4,200	-	-	-	-
Hydroelectric power plant	500	3,250	-	-	-	-

Scenarios - Status quo -

First step

As basis, the **"status quo"** of the 3 regions is generated for the year **2007**.

- \rightarrow The biomass potential is calculated.
- \rightarrow Bioenergy technologies are selected.

Heating plant Biogas plant + CHP Biomass heating and power station Liquide biofuels

 \rightarrow Other renewable energy techniques are selected

Wind energy Solar heating and photovoltaics Water power Geothermal heating

Scenarios - Reference and objective scenario -

Second step

Two scenarios are generated for the year **2020**.

- \rightarrow The **reference scenario**, i.e. moderate increase of renewables.
- → The objective scenario, i.e. increase of renwables with target of a complete self supply.

All renewable energy technologies of the status quo are used, additionally

biomass gasification + CHP biogas + fuel cell bioethanol production + biogas plant biomethan

Restrictions for all scenarios:

- \rightarrow Only raw material of the region is used.
- → Self supply by food is given, e.g. no competions between bioenergy and food takes place.
- \rightarrow Priority is put on the more efficient stationary energy facilities.

Scenarios - Reference and objective scenario -

The following development and differences between reference and objective scenarios are given for biomass production.

Land use	Reference scenario	Objective scenario	
Fallow land	Recultivation of 50 % for cultivating energy crops	Recultivation of 100 % for cultivating energy crops	
Forest increase	0.07 %/a	0.14 %/a	
Arable land			
- for food production	Decrease as a result of declining population figures and increasing yields.		
- for energy crops	Increase of areas	Increase of areas	
	Distribution of crops:	Distribution of crops:	
	• 10 % of land for SRC	• 40 % of land for SRC	
	• 20 % for rapeseed	• 40 % of land for corn	
	• remaining land: corn, grain	• 20 % of land for grain	
Yields per hectare			
Grain	0.5 %/a	1.0 %/a	
Corn	1.0 %/a	1.5 %/a	
Rapeseed	0.8 %/a	No energetic use because of little output	
SCR	1.0 %/a	1.0 %/a	

Scenarios - Results, summerized -

Source: DBFZ

Scenarios - Results, specific -

Source: DBFZ

Summary and discussion

- No region can realize a complete self-supply, but self-supply is possible (also exclusively with bioenergy) for heat and electricity.
- Significant differences between the regions are given.
 - \rightarrow as well on supply side as on demand side
- Different development in the scenarios between the regions are given:
 - \rightarrow main reasons are

differences in total area and land use (forest, acreage, grassland) density of livestock

differences in economic situation and therefore energy demand dimension of population decrease

For a self-supply

 \rightarrow great efforts are necessary (see assumptions in the objective scenario)

 \rightarrow a detailed regional analysis is necessary

Important:

If renewable energies should be used considerable, all relevant regional stakeholders have to be include from the very beginning.

Funding program of the Federal Ministry of Environment in Germany

Funding program of the Federal Ministry of Environment in Germany

Development of applicable concepts for environmentally sustainable energetic use of grass and reed (03KB035AB)

- \rightarrow Project goals:
- Analysis of regional biomass potentials from landscape management (grass/hay and reed)
- Optimization of treatment processes and combustion of hay
- Information about the current status, acceptance and possible use of grass in biogas plants
- Development of applicable regional concepts for the energetic use of these residues
- \rightarrow Relevance for Eastern Europe:
- Transfer of project results for potential analysis, hay treatment, combustion techniques and concept development to use grass and hay for energetic purposes

Funding period: 11/2009 – 03/2012 Project coordination: German BiomassResearchCentre (DBFZ) Project partners: Leibnitz-Institute for Agricultural Engineering Potsdam-Bornim(ATB) Subcontractor: Bosch&Partner

Contact:

Thilo Seidenberger – Project coordination Phone: +49 (0) 341 2434-461 Email: thilo.seidenberger(at)dbfz.de

Thanks a lot for your attention!

Deutsches BiomasseForschungsZentrum gemeinnützige GmbH Torgauer Straße 116 D-04347 Leipzig

www.dbfz.de Tel./Fax. +49(0)341 - 2434 - 112 / -133 Dipl.-Ing. agr. Thilo Seidenberger Tel. +49(0)341 – 2434-461 thilo.seidenberger@dbfz.de