Experience of Renewable Energy Sources use in Uzbekistan

Professor Ioannis Rampias, TEI of Athens

and

Klimenko Natalya, Energy Expert, ANCE

Athens, October 2010

- Renewable Energy Sources (RES) applications are currently widely discussed in the Central Asian countries
- In this presentation a brief overview of the RES policy and experience of RES usage in Uzbekistan is presented through the example of an on-going RES project financed under a Europe Aid programme
- This project involves an integrated approach through the use of various RES technologies for sustainable development, creation of jobs and improvement of living conditionsin Kamar village of Shahrisyabz region in Uzbekistan

Brief overview of the RES policy and projects in Uzbekistan

Since eighties there are a number of important scientific and research institutes in Uzbekistan involved in development of various applications on the basis of RES.

Leading Research Institutes in the field of RES are:

- The Institute Phisika-Solntse (Phisics-Sun)
- The Physical Technical Institute
- There are a few industrial enterprises that started production of RES equipment, such as:
 - Kurilishgelioservcice LLC
 - Zenit,
 - Foton
 - Algorythm

Since 2000 some demonstration projects were implemented with participation of international donors

- Lessons learned as a result of RES implementation projects:
 - The majority of the territory of Uzbekistan is considered as territory with wind speeds lower than 3-5 m/sec. However there are some areas which possess quite high wind energy potential
 - 2. Solar energy is not a feasible source of energy in Uzbekistan. Nevertheless, there are some policy measures that could change the situation and make solar energy more attractive

Suggested policy measures:

- Development of legal basis and initiatives for
 participation in Clean Development Mechanism
- Cooperation with donor organizations for development of RES technologies affordable by local consumers
- Increase of awareness among entrepreneurs about emerging opportunities
 - 3. Uzbekistan possesses quite big resources of gas, however, it is important that measures directed at gradual introduction of solar systems in district and water heating as well as energy supply from RES installation at the remote locations can free additional amounts of gas for export

> Barriers for RES Implementation in Uzbekistan:

- 1. Low prices of conventional energy sources and existing power and fuel balance in the country
- 2. Lack of legislative support
- 3. Low purchasing power of population
- 4. Lack of financing and absence of investors interested in investing in these technologies
- 5. Absence of a united coordinating state body responsible for RES development in the country and lack of information and public awareness

Description of the on-going RES project

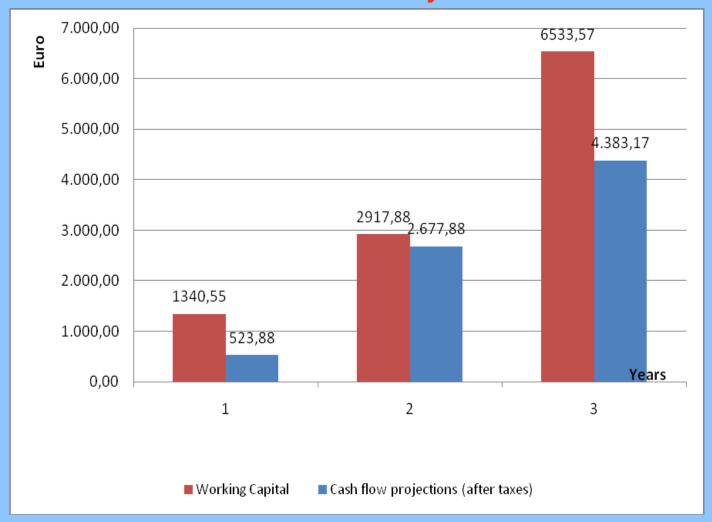
The Kamar Project is different from other projects, as it is aimed not only at demonstrating of the possible technical solution for operation of RES equipment in a remote village, but it attempts to introduce an integrated solution for improvement of life conditions in the whole village


The partial provision of electricity from RES to the village will enable the development of economic activity and increase in employment that will lead to the improvement of living standards, and will ensure sustainable economic growth and the reduction of poverty

- The use of RES will also have beneficial effects on the levels of health, and potentially education and literacy of the local population and will also contribute to the protection of the environment
- A Cooperative has been created on the 11th of March 2010 which functions under the auspices of the Administration of the Kamar Citizens General Meeting (AKCGM) and received the RES equipment from the project and concluded individual contracts with the members (small enterprises or cooperatives) on the targeted use of this equipment

Investment needs for the Cooperative start up

Investment	Amount Euro	Sources of funding	
Total start up investment	85,300		
Full members	2,000.00		
Dried fruits production	1,000.00		
Photographic shop	300.00		
Hairdressers	100.00	costs of equipment covered by the cooperative members	
Sewing workshop	500.00		
Phone payment point	100.00		
Legal/professional fees	40	paid by the project for one month involvement of a local legal expert	
Equipment	60,000.00	provided by the project	
Equipment Installation	20,000.00		
Associated Members	2,700.00		
Bathhouse	1,000.00	pre-establishment costs of repairs/construction and others are	
Canteen	500.00		
Vegetable oil production	300.00	covered by the members/owners; legal/professional fees are	
Flour mill	400.00	included in the costs for full members	
Fertilisers	500.00		
Additional cash for covering first six months deficit	560	Was secured prior the start of operations of the Cooperative	


Monthly Sales and Costs of Sales of Kamar Cooperative for the first

three years

Projected financial and economic results for the Cooperative

Kamar Cooperative working capital and cash flow projections for the first three years

Energy production from the RES installations

RES technologies	Capacity	No of units	Average annual electricity production
Micro hydro power plant	10 kW	1	51,840 kWh
Solar photovoltaic systems	0.16 kW	23	6,182 kWh
Wind-driven generators	1 kW	2	7,200 kWh
Solar water heaters	500 liters	1	2,400 kWh
	200	1	
	100 liters	1	
			Annual saved equivalent electricity use for cooking
Small biogas plants	3 m ³ /day	10	64,800 kWh

Electricity Production from RES			
Annual Avoided Electricity Consumption from Grid	Annual Avoided CO ₂ Emissions		
67,622 kWh	46 metric tons of CO ₂		

Heat Production from SBPs				
Annual CO ₂ Emissions from 10,800 m ³ of Biogas use	Avoided CO ₂ Emissions from equivalent use of Electricity			
17,3 metric tons of CO ₂	44,04 metric tons of CO ₂			

Specific Technical, Economic and Environment Protection Related Conclusions

Technical

- Due to budget limitations the selected equipment does not cover completely the existing energy needs in Kamar village. The selected RES installations are used in parallel with the existing problematic electricity supply grid. The project is a good demo site where the advantages of RES utilisation in the rural areas can be demonstrated fully.
- The installation and operation of RES is at the final stage and proper conclusions will only be possible after the equipment are monitored for a year or so. For that reason the cooperation with Tashkent State Polytechnic University has been secured. The results of the monitoring are important, because this is the first example of sustainable use of practically all RES technologies in a rural area of Uzbekistan.

Specific Technical, Economic and Environment Protection Related Conclusions

Economic and social

- With the additional electric power from RES the quality of life of inhabitants of Kamar is improved and new working places are created boosting the business development.
- With start of operation of biogas installations the sanitary conditions should be improved drastically.

Specific Technical, Economic and Environment Protection Related Conclusions

Environment protection

- With RES technologies in full operation in Kamar village, 67,622 kW will be saved annually along with the estimated annually avoided CO_2 emissions of 46 tons.
- With SBPs a renewable source of energy (biogas-methane) is captured, which has an important climatic twin effect:
 - Reduction the CO₂ emissions through a reduction of the demand for fossil fuels as well as branches of trees, bushes, leaves and dried dung.
 - By capturing uncontrolled methane emissions from dung the second most important greenhouse gas (methane) emissions are reduced.
- The SBPs in the ten households with an annual production of 28.8 tons of bio-fertilizer result to a considerable reduction of CO₂ emissions from the avoided production of chemical fertilizer.

✓ The RES installations in the Kamar village have shown that are not feasible from the conventional economic point of view; however, the social needs, sustainable development and environment protection issues are strong enough arguments that can help find the solutions to the economic problem.