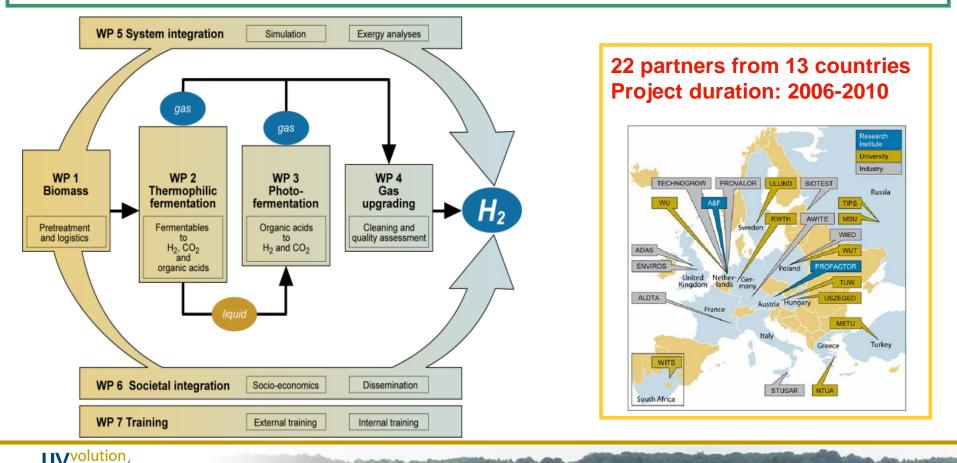
Building sustainable biomass-to-biofuel systems:

Prospects for biohydrogen generation in two EU regions

L. Karaoglanoglou, L. Diamantopoulou, E. Koukios, School of Chemical Engineering, NTUA, GR
R. Bakker, S. Lips, A&F, NL
J. Hesselink, PROVALOR, NL
P. D. Skayannis, UT, GR

 $\frac{\mathbf{k}}{\mathbf{M}} = \frac{\mathbf{0}}{\mathbf{1}}$ 3rd International Scientific Conference on Energy and Climate Change $\frac{\mathbf{k}}{\mathbf{H}} = \frac{\mathbf{0}}{\mathbf{1}}$ 7- 8 October 2010, Athens (Hellas)

Outline

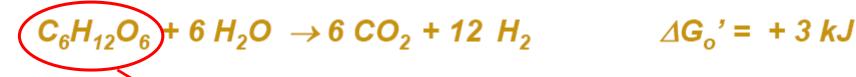

- Overview of EU HYVOLUTION Project
- Exploring the regional dimension of feasibility and sustainability of the biomass-to-biohydrogen generation chains
- Mapping the overall biohydrogen generation potential in 2 typical EU regions
- Selection of most promising feedstocks and their potential availability in the regions
- Prospects in a 20 year perspective for the regions
- Crucial stakeholders and policy aspects

IP "HYVOLUTION" Project Non-Thermal Production of Pure Hydrogen from Biomass

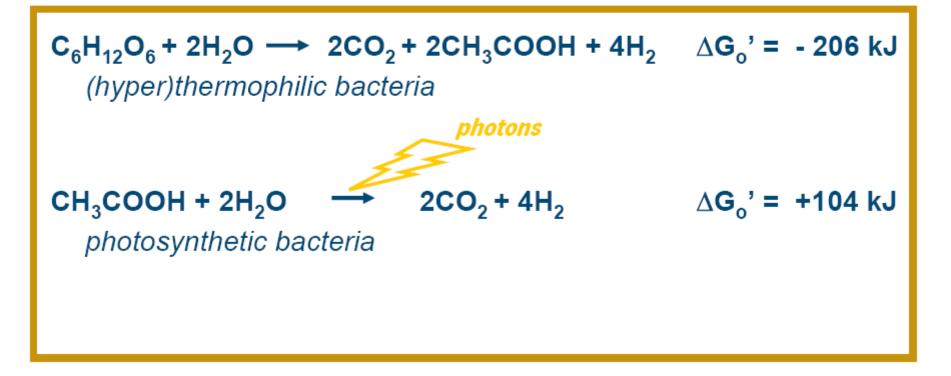
ACKNOWLEDGMENTS

This work is financially supported by the "Hyvolution" Integrated Project, within the 6th Framework Program of the European Commission.

A DESCRIPTION OF THE OWNER OF THE


IP "HYVOLUTION" Non-Thermal Production of Pure Hydrogen from Biomass

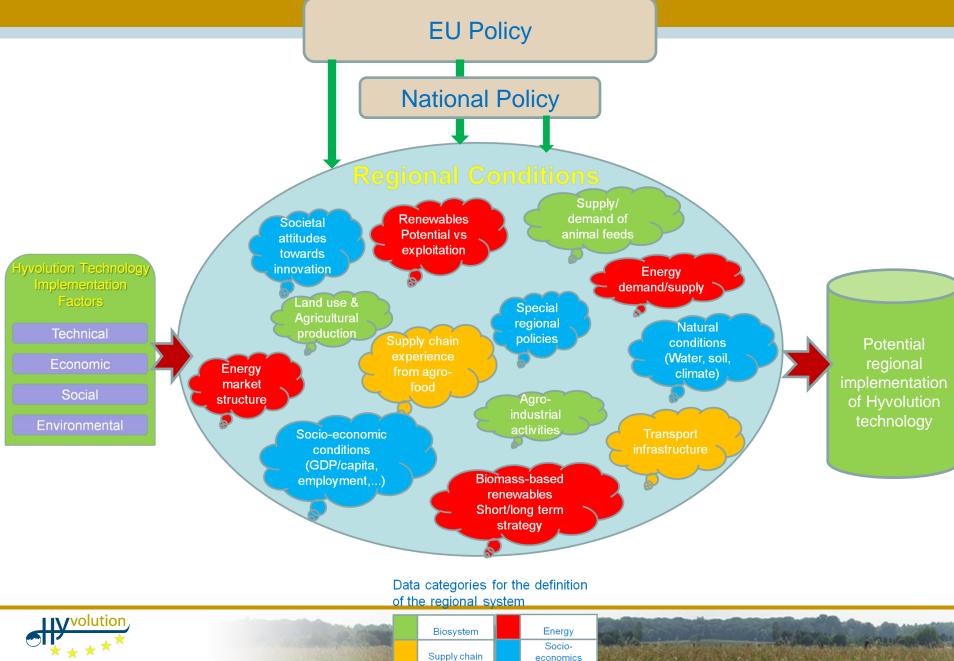
The main objectives of Hyvolution project:


- the development and optimization of a 2-stage bioprocess for the generation of pure hydrogen from biomass,
- the simultaneous optimization of technical, economic, environmental and social parameters of the whole biomasss-to-biohydrogen chain, and
- the exploration of the sustainable operation of the specific technology under various regional conditions within EU, and

IP "HYVOLUTION" Non-Thermal Production of Pure Hydrogen from Biomass

→ Water soluble monomeric and oligomeric carbohydrates

<u>Major advantage</u>: Potential for feasible and sustainable operation of relatively small units, up to 2MW (fed by 8000 dry tons of biomass/a)


 $\star \star \star \star$

Feedstocks for Hyvolution technology

- The carbohydrate resources from agricultural and agro-industrial sector are considered as potential feedstocks for the examined technology. (Claassen et al, 1999)
- The overall annual hydrogen generation potential, based on the major, non forest originated, EU biomass resources, has been assessed as about 30 Mt (Karaoglanoglou et al, 2008).

Regional dimension

Regional dimension

2 basic selection criteria: GDP/capita and Innovation index, both have a direct impact on the economic and social structure of the regions Target: to derive useful insight through two "extreme" EU cases

«Industrial North» Innovation Score Thessalv 0,1 (200/203 Regions) Zuid Holland 0,58 (38/203 Regions) Range of Scores 0,01-0,90 **GDP/Capita** Thessaly 73.8 Zuid Holland 134,5 EU Average 100 Range of GDP/capita within EU 24-303

«Rural South»

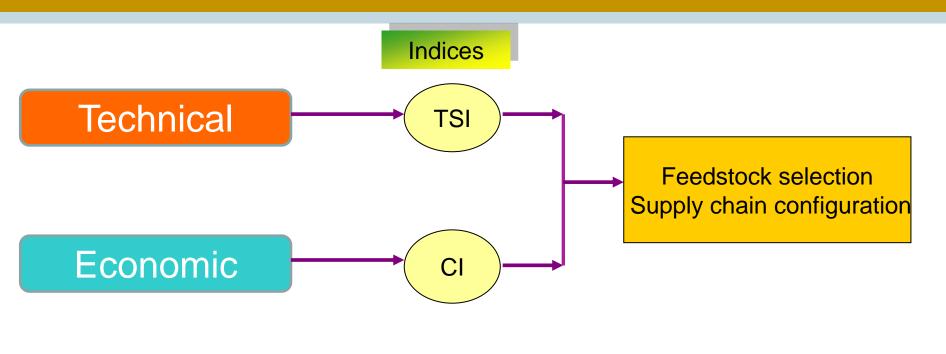
Regional dimension

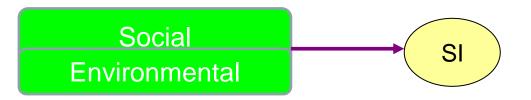
	"Rural South": THESSALY	"Industrial North": ROTTERDAM
	- Total Agricultural Land: 490000 ha	- Total Agricultural Land: 150000 ha
Land use / Main Agricultural Products	- Cotton: 150000 ha	- Cereals: 12500
	- Wheat: 110000 ha	- Potatoes: 9000 ha
Land use / Main Agricultural Floducts	- Barley: 14000 ha	- Sugar beet: 4000 ha
	- Sugar beet: 7000 ha	
	- Fallow/pasture land/other not utilised agricultural land: 38000 ha	
Estimated Agricultural Income 🧹	850-2500 €/ha (40-50% coming from national or EU subsidi	900-2500 €//ha (much higher for greenhouse agriculture)
	2 large wheat mill units	silsed crushing
	1 large juice production unit	- grain processing
Agro-industrial Units	Several small canned product units	- large beer breweries
	Several oil production/processing units	- potato processing facilities
	- 2 wheat mills are placed in Larissa and Magnesia prefectures	Main agro-industrial units are placed around the port of
Spatial Distribution of Agro-industrial	- The juice production unit is placed in Magnesia prefecture	Rotterdam, within a 30 km radius
Units	- The rest units are distributed throughout the 4 prefectures	, ····
	- wheat bran	- wheat bran
Potentially Available Agricultural and	- wheat and barley straw	- potato steam peels
Agro-industrial By-products	- pulp from juice industry	- cake from oil industry
	- cake from oil industry	, , , , , , , , , , , , , , , , , , ,
	- a major port in Magnesia prefecture	- Rotterdam port (Europe's cheapest bunker port): the
Transport Infrastructure	- good road network	third largest port in the world
rr	0	- railway and road network supplying the port
	Already existing import (oil/oil seeds, cereals) and export (flour	The agro-industrial units of the region are largely based
Available Supply Chain Infrastructures	and other processed cereal and juice products) activities in the	on imported feedstock. The Agri-bulk handled in
	region	Rotterdam is about 9.5 million tones
	135 MW power produced in H/E plants, and 2 biodiesel	- electricity production using imported wood residues(1
Renewable Energy in the Region	production units	Mton dry wood residues)
	I COLLECTION	- wind energy
	- 2 biodiesel production units (using imported feedstock) of 55000	co-firing of wood for electricity
	tonnes total capacity	surplus of heat from oil refinery
Biomass-based Energy Production	- 1 bioethanol unit (from sugar beet and cereals) to be operational	- farm scale biogas digesters
	within 2010 *	several bioethanol facilities around the port area
Population	About 750000 persons	About 1600000 persons
• • • • • • • • • • • • • • • • • • •	73.2 (considering 100 the GDP of EU25)	- 204 billion Euro regional product
GDP/Capita - Employment	13% employed in primary sector	- 21% of the total employment of NL, 1.5% in primary
	Governmental initiatives encouraging the land use change	Sustainable production program for all the economic
Special Regional Conditions - Policies	(especially from cotton to alternative crops)	sectors
	"Thessaly Biofuel Technology Platform" along with the Thessaly	- Positive public response to "green electricity"
Social Acceptance of Bioenergy Projects	University play a positive role in the social acceptance of biofuels	- Negative public response to large biofuel plant projects

"Mapping the Landscape" of potential

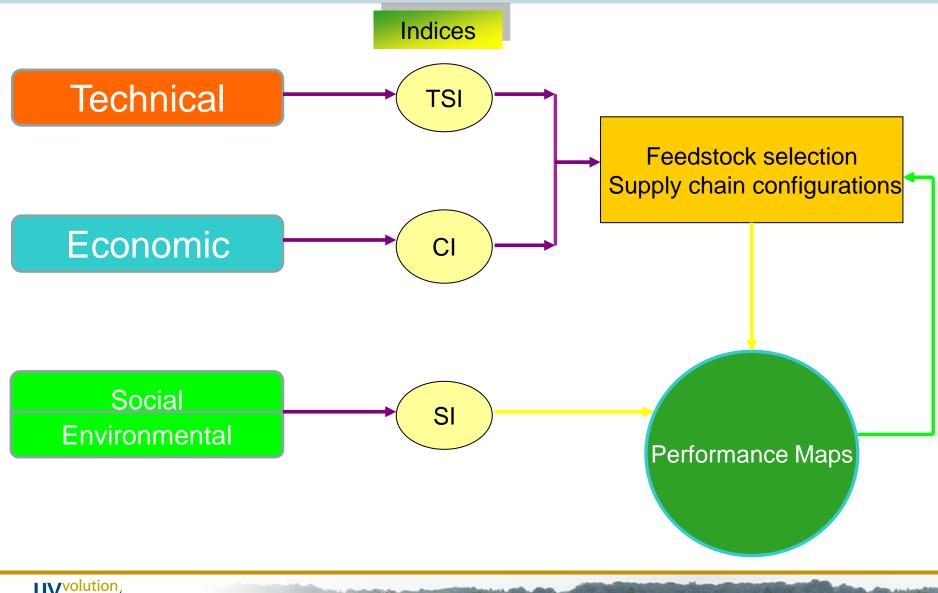
Potential Feedstocks for Hydrogen Production

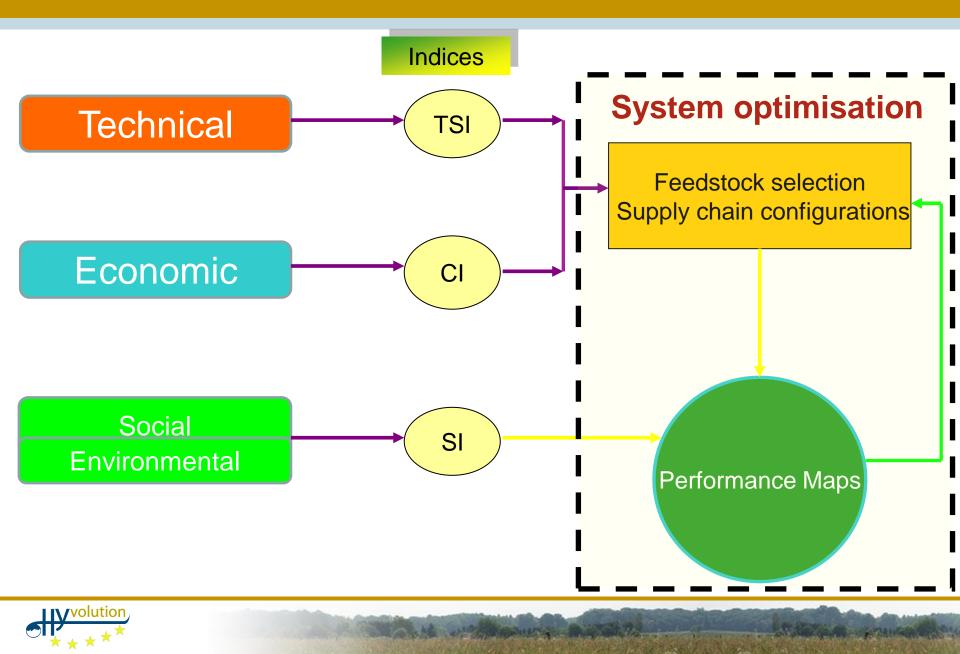
	0.0							
	CROPS, CROP PARTS AND AGRO-INDUSTRIAL RESIDUES AS POTENTIAL FEEDSTOCKS by-products						OCKS	
	Crop Category	Сгор	main product	leafy biomass	stems-stalks	pulps-cakes	sludges-other wet residues	
<u>v</u>	Sugar Crops	sugar beet	sugar	leaves	-	pulp	molasses sludge	
ed		potato	tuber	leaves	-	peels	starch	
nal ne		wheat	grain	-	straw	husks,hulls,bran	wet milling wastes	
Crops already cultivated for nutritional needs	Crops	barley	grain	-	straw	husks,hulls,bran	wet milling wastes brewery waste	
	Starch Crops	tarch	maize	grain	-	straw cob	corn-oil cake	wet milling wastes
		other cerials	grain	-	straw	husks,hulls,bran	wet milling wastes	
ly cul		rice	grain	-	straw	husks,hulls,bran	wet milling wastes	
ead	Ś	grapes	wine, juice	-	vine	pulp	wet residue	
is alre	Other Food Crops	apples	canned prod., juice	-	wood, trimmings	pulp	wet residue	
Crop		Food	other fruits	canned prod., juice	-	wood, trimmings	pulp	wet residue
	ther	vegetables	canned prod., juice	leaves	-	- pulp	wet residue	
		oil seeds	veg. oil	-	straw	oil cake	wet residue	
Energy crops	Sugar Crops	sw. sorghum	sugar	leaves	bagasse	-	sludge	
	Lignocellulosic crops	Miscanthus	stems/stalks	leaves	-	pulp	-	


15 crop main product and 29 farm or industrial level by-products and residues were considered as potential feedstocks

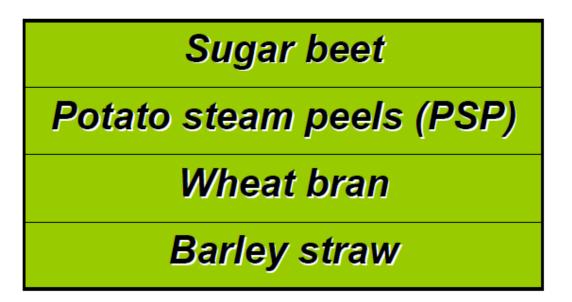

"Mapping the Landscape" of potential for THESSALY

	HYDROGEN P	POTENTIAL (10	^3 t) FOR THESS	SALY						
			10% of the	by-products						
	Crop Category	Сгор	main product production as feedstock for hydrogen *	leafy biomass	stems-stalks	pulps-cakes	sludges-other wet residues	Total Hydrogen Production Potential		
Crops already cultivated for nutritional needs	Sugar Crops	sugar beet	0,356	1,433	-	0,996	0,897 0,089	3,771	<1.00 1.00-10.00 10.00-20.00	
na		potato	0,022	0,000	-	0,031	0,015	0,068		
itio		wheat	1,326	-	11,236	1,326	0,474	14,363		
nutr	Crops	barley	0,178	-	1,505	0,178	0,063 -	1,923		
ed foi	Starch Crops	maize	0,979	-	<mark>11,746</mark> 4,894	0,979	0,350	18,947		
tivate	Sta	other cereals	-	-	-	-	-			
CU		rice	0,002	-	0,016	0,002	0,001	0,021		
dy	7	grapes	0,028	-	0,826	0,445	0,065	1,363		
rea	Other Food Crops	apples	-	-	-	-	-	0,000		
a		other fruits	0,013	-	3,927	0,143	0,022	4,106		
crops		vegetables	1,169 0,000	1,451	-	0,164 0,000	0,029 0,000	2,814		
0		oil seeds	-	-	5,835	4,237	0,076	10,147		
sdo	Sugar Crops	sw. sorghum	15,223	2,664	4,262	-	0,381	22,530		
Energy crops	lignocellulosic crops	miscanthus	-	-	-	-		-		
		Total Hydrogen production Potential	19,297	5,548	48,509	8,501	2,461	80,054	* 100% of main H2 production energy crops	


Selection of promising feedstocks and chains

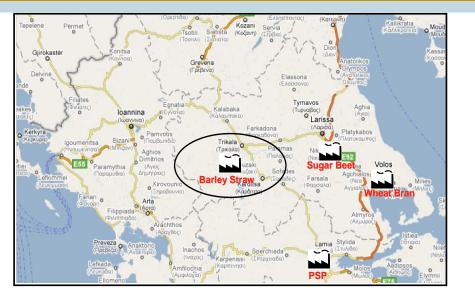


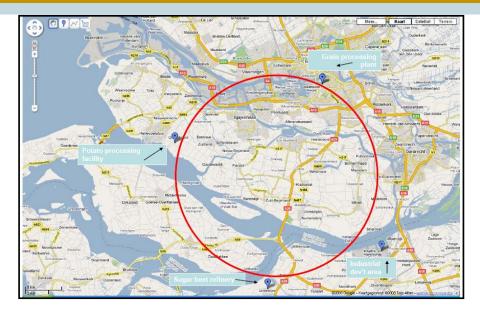
Selection of promising feedstocks and chains



Selection of promising feedstocks and chains

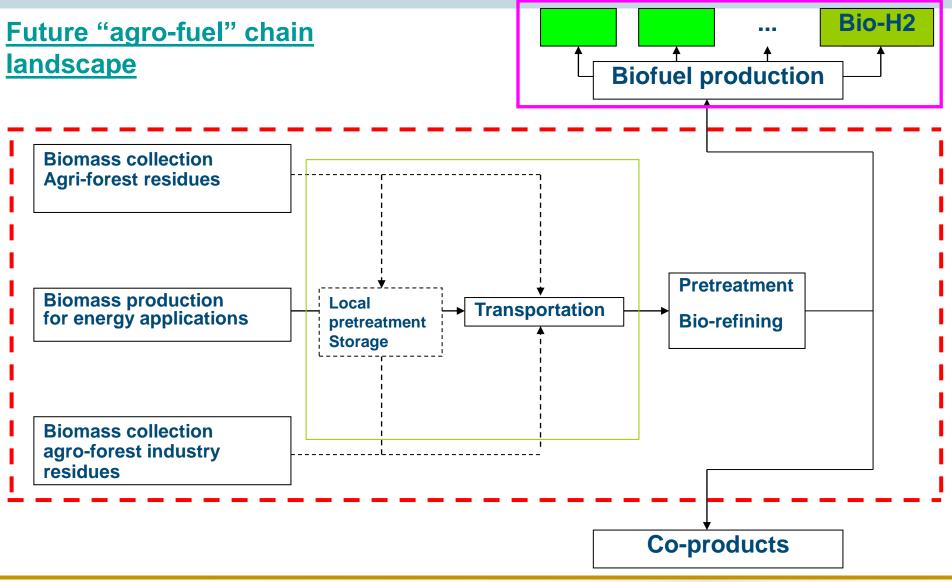
Selected Feedstocks: Techno-Economic Criteria


Feedstocks selected by applying, in a top down approach, the Methodology developed in Hyvolution for the Assessment of Technical and Economic Feasibility of Biomass sources:



Biohydrogen generation potential from 4	3.2 kt
selected feedstocks in Thessaly	

Assessing the current perspectives in the two regions

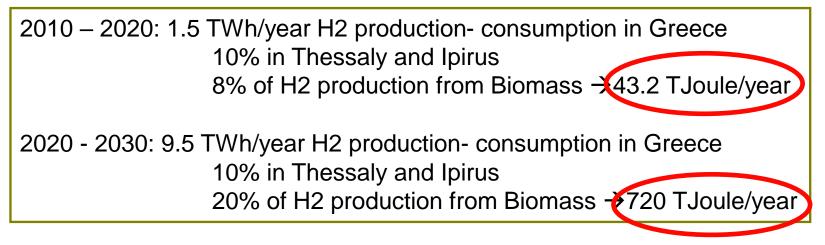


Potential Feedstock	Location	Co-operation with existing or potential industrial units	Hydrogen Unit Type	Potential Capacity
Sugar beet	Larissa	Bio-ethanol Production Unit (under construction)	Add-on	>> 8000 dry t/year
Wheat Bran	Volos	Wheat Mill (locally produced and imported wheat)	Add-on	> 8000 dry t /year
Potato Steam Peels	Lamia (city close to Thessaly region)	Potato Chips Production Plant	Add-on	~ 8000 dry t/year
Barley Straw	Karditsa-Trikala	Regionally produced straw	Local stand alone	~ 8000 dry t/year

Potential Feedstock	Location	Co-operation with existing or potential industrial units	Hydrogen Unit Type	Potential Capacity
Sugar beet	Rotterdam port area	Sugar Production Unit	Add-on	>> 8000 dry t/year
Potato Steam Peels	Rotterdam port area	Potato Chips Production Plant	Add-on	>> 8000 dry t/year
Wheat Bran	Moerdijk industrial area	Wheat Mill (mainly imported wheat)	Add-on	>> 8000 dry t /year
Barley Straw	Rotterdam agricultural land area	Regionally produced straw	Local stand alone	~ 8000 dry t/year

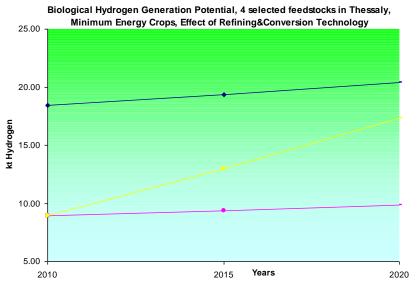
Future trends and long range dynamics

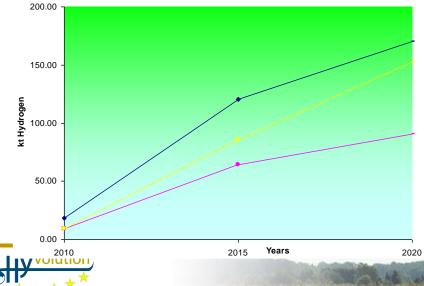
Future trends and long range dynamics

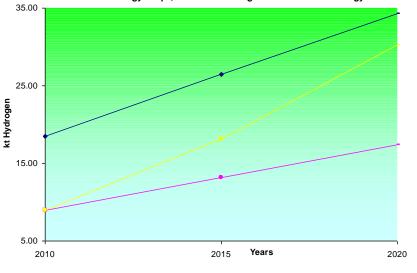

Alternative Biomass-to-Hydrogen Pathways

High Carb – Low DM:	High Carb – High DM:		
Biomass -> BioH2 (<i>HYVOLUTION</i>)	Biomass -> Bioethanol -> Reforming -> H2		
Low Carb – Low DM:	Low Carb – High DM:		
	Low ours might bin.		

Prospects in a 20 year perspective

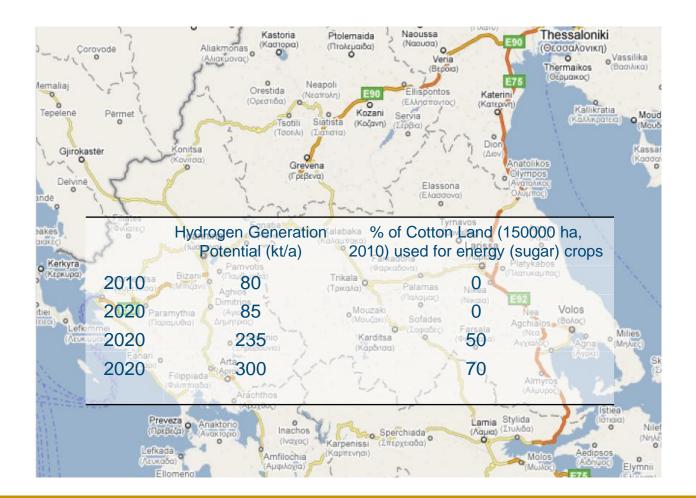

Assessing the future hydrogen demand Thessaly (2010-2030)


Based on EU Project HyWays


Future prospects in Thessaly

Biological Hydrogen Generation Potential, 4 selected feedstocks in Thessaly, Maximum Energy Crops, Effect of Refining&Conversion Technology

Biological Hydrogen Generation Potential, 4 selected feedstocks in Thessaly, Medium Energy Crops, Effect of Refining&Conversion Technology

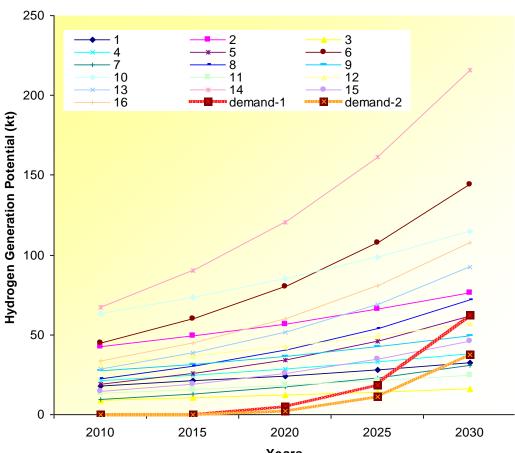

Supply-side scenarios for 4 selected feedstocks based on land use change and technological efficiency improvement in pretreatment and conversion processes

Maximum potential

Current refining and conversion technology Gradual improvement up to an optimum of refining &conversion

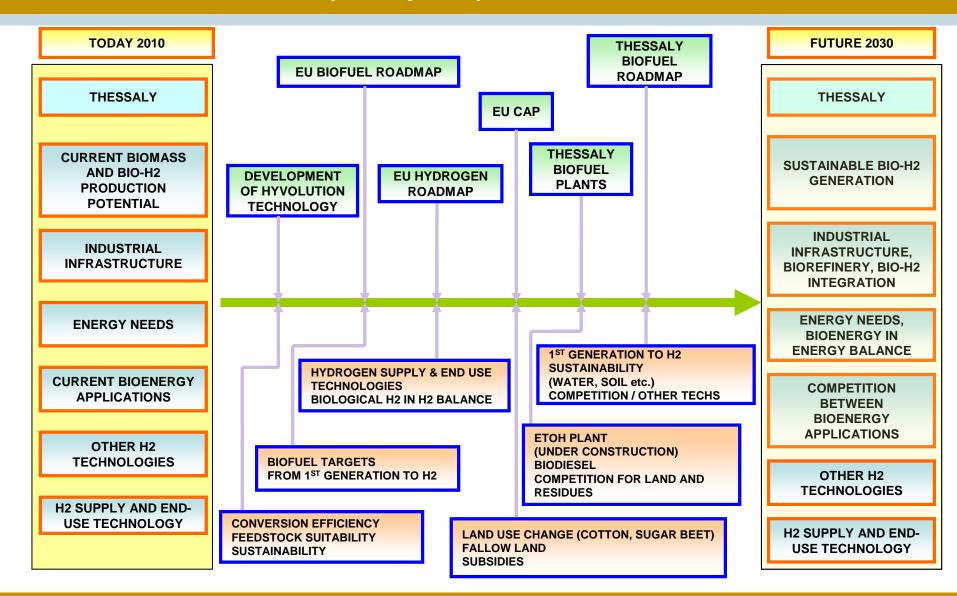
Future prospects in Thessaly

Total biohydrogen generation potential based on land use scenarios



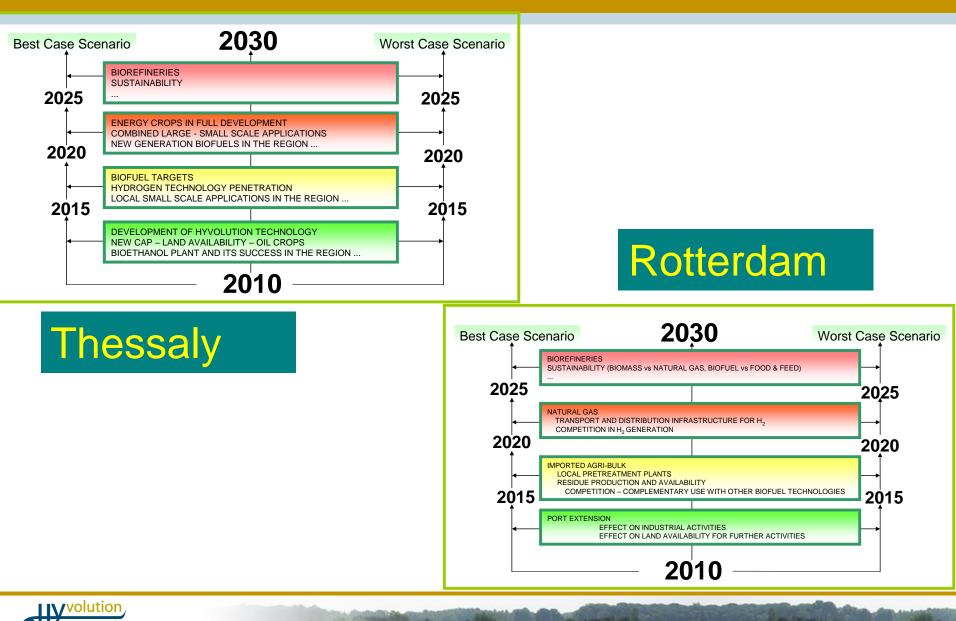
Future prospects in Rotterdam

Scenarios	Annual increase in agribulk handled in industries of port area	Available by- products/residues for hyvolution	Carbohydrate recovery	Hydrogen conversion *
1	3%	10%	30%	100%
2	3%	10%	70%	100%
3	3%	10%	30%	50%
4	3%	10%	70%	50%
5	6%	10%	30%	100%
6	6%	10%	70%	100%
7	6%	10%	30%	50%
8	6%	10%	70%	50%
9	3%	15%	30%	100%
10	3%	15%	70%	100%
11	3%	15%	30%	50%
12	3%	15%	70%	50%
13	6%	15%	30%	100%
14	6%	15%	70%	100%
15	6%	15%	30%	50%
16	6%	15%	70%	50%


* 100% conversion = 0.1 t hydrogen from 1 t carbohydrates

Years

Stakeholders and policy aspects



A STATE OF THE PARTY OF THE PARTY OF THE

THE REAL PROPERTY AND INCOMENTS

Stakeholders and policy aspects

Concluding remarks

<u>General</u>

- Simultaneous research on the improvement of the hydrogen production efficiency and on the enrichment of the techno-economically suitable and sustainable feedstock portfolio should be carried out.
- It is assessed that the transition from first generation to second generation biofuels and biohydrogen will play a crucial role for the land and infrastructure availability in both examined regions.
- Diverse effects of existing biofuel production plants on the development of Hyvolution technology:
 - Positive, in the "start-up" phase, providing the necessary infrastructure for pilot or small scale production
 - Possible negative effect in further development phase due to land use competition
 - Success stories" of first generation biofuels will improve the social acceptance of biofuels and will create a "bio-society" culture which will facilitate the integration of Biohydrogen generation into the existing energy system

Concluding remarks

Thessaly

- The social impact assessment of cotton culture replacement, in Thessaly, by energy crops should also consider the impact of this situation on the secondary sector, the cotton gin plants of the region, which employ a large number of labourers (about 200 permanent and 600 seasonal)
- The energy crop cultivation scenarios, even the most conservative ones, increase the potential significantly, increasing the importance of Thessaly in the future hydrogen economy, as well. According to the assumed "maximum energy crops" scenario in the region, 2.5 to 4.7% of the expected transport sector energy needs [EC DG for Energy and Transport, 2007] (or 1.0 to 1.9% of the expected overall energy needs) of Greece in 2020 can be covered by the "Hyvolution" Hydrogen which will be produced in the region.

Concluding remarks

Rotterdam

- The supply and demand site scenarios showed that the hydrogen demand of the region can be easily covered by the feedstock availability from the regional agro-industrial units, under the conditions that the continuous future development of these units is secured and that the techno-economic feedstock suitability issues for a larger number of potential Hyvolution feedstocks are solved.
- The land need for the reactor of the photochemical fermentation (currently 60ha for an 8000 dry tonne/year biomass plant capacity, estimation for 10 ha after process optimisation) is a further concern especially for Rotterdam case where the land availability is already limited.

Thank you for your attention!

