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Introduction

▪ CCS is considered an important 

option to reduce CO2 emissions

▪ Large CO2 emission sources are 

particularly attractive for CCS

▪ More than 30% of the global CO2

emissions result from coal fired 

power plants 

▪ Only post combustion capture 

enables retrofitting of existing 

power plants and industrial units 
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Definition of boundary conditions (I)

▪ Power plant

▪ 560 kg/s flue gas

▪ 1 bar, 50°C, saturated in water

▪ CO2 13.6%, N2 71.2%, O2 3.2%

▪ Contaminants (SOx, NOx)

Power 

plant
Capture Transport Storage

▪ CO2 requirements?

▪ CO2 concentration

▪ Trace components  

▪ How much to 

be captured?



Definition of boundary conditions (II)

▪ Delivery to pipeline at 130 bar and 30°C

▪ Composition 

▪ > 95.5 mole-% CO2

▪ max. 4 mole-% of air gases (N2, Ar, O2)

▪ 2 scenarios for O2 content

▪ High purity (only 100 ppm allowed)

▪ Up to 4 mole-% O2

▪ SOx and NOx (max. 0.5 mole-% in worst case) 

▪ Residual water content: not specified 

▪ Optimal capture rate: 90% assumed as optimal



Membrane separation materials 

▪ Ceramic membranes seem inadequate for post com-

bustion CO2 capture

▪ State-of-the-art polymers appear most suitable

▪ Permeability H2O >> permeability CO2

▪ Permeability SO2 ≥  permeability CO2

▪ Mass transfer across membrane: ni = Qi AMem (xi pF - yi pP)

CO2

Permeance

CO2/N2

Selectivity

CO2/O2

Selectivity

CO2/SO2

Selectivity

PPO 4.1 20 4,5 5

PEO 1.25 45 15 0.2



Driving force generation (I)
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Driving force generation (II)

▪ Feed compression

▪ Low membrane area, high energy consumption

▪ No pressure limitation

▪ Suction at the permeate side

▪ Large membrane area, lower energy consumption

▪ Pressure limit at about 200 mbar

▪ Feed compression in conjunction with suction

▪ Combines advantages of feed compression and suction

▪ Most likely concept to generate driving force

▪ Sweeping

▪ Only applicable in combination with vacuum on the permeate side

▪ Process steam no option for sweeping at the permeate side



Single-stage membrane system (PPO membrane)  
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Single-stage membrane system (PEO membrane)  
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Summary single-stage membrane processes 

▪ Trade-offs

▪ CO2 enrichment, CO2 recovery and energy requirement

▪ O2 and SO2 enrich in CO2

=> additional treatment to achieve low SO2 and O2 content

▪ Single-stage process works for enrichment

=> Further enrichment / purification by 2nd membrane stage



Two-stage membrane processes  

▪ Process flowsheet 
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Two-stage membrane processes  

▪ Results two-stage processes 

▪ PPO membrane in 1st stage / PEO membrane in 2nd stage

▪ 95.5% CO2

▪ 90% CO2 recovery from the flue gas

Feed pres.

1st/2nd stage

Energy

[kJ/kg]

Area 

[105 m2]

O2

[%]

SO2

[ppm]

3 bar / 4 bar 1910 7 1.8 510

4 bar / 4bar 1940 5 1.8 510

=> Impossible to reach low O2 residual content 



Summary and conclusions

▪ Membrane gas separation for post combustion CO2 capture is 

an emerging technology

▪ Polymer membranes are presently the best choice 

▪ Feed compression in conjunction with suction at the permeate 

side appears the best option to generate the driving force 

▪ Single-stage processes are unable to achieve 95.5% CO2 in 

conjunction with reasonable CO2 recoveries 

▪ Two-stage processes reach 95.5% CO2, but fail to meet strict 

concentration limits of co-captured species

▪ Membrane-hybrid processes may achieve low residual contents 

of  co-captured species
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Thank you very much 

for your attention

This study is part of the NanoGLOWA project (NMP3-CT-2007-026735), which has been financially 

supported by the EU Commission within the thematic priority NMP of the Sixth Framework Program. 
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