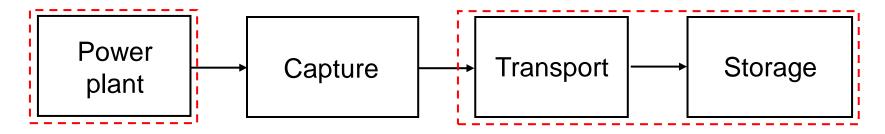
AACHENER VERFAHRENSTECHNIK

Are membrane gas separation processes able to meet the product specifications of post combustion CO₂ capture?


P. M. Follmann, C. Bayer, <u>B. Fischer</u>, M. Wessling, T. Melin Athens, 7-8 October 2010

- CCS is considered an important option to reduce CO₂ emissions
- Large CO₂ emission sources are particularly attractive for CCS
- More than 30% of the global CO₂ emissions result from coal fired power plants
- Only post combustion capture enables retrofitting of existing power plants and industrial units

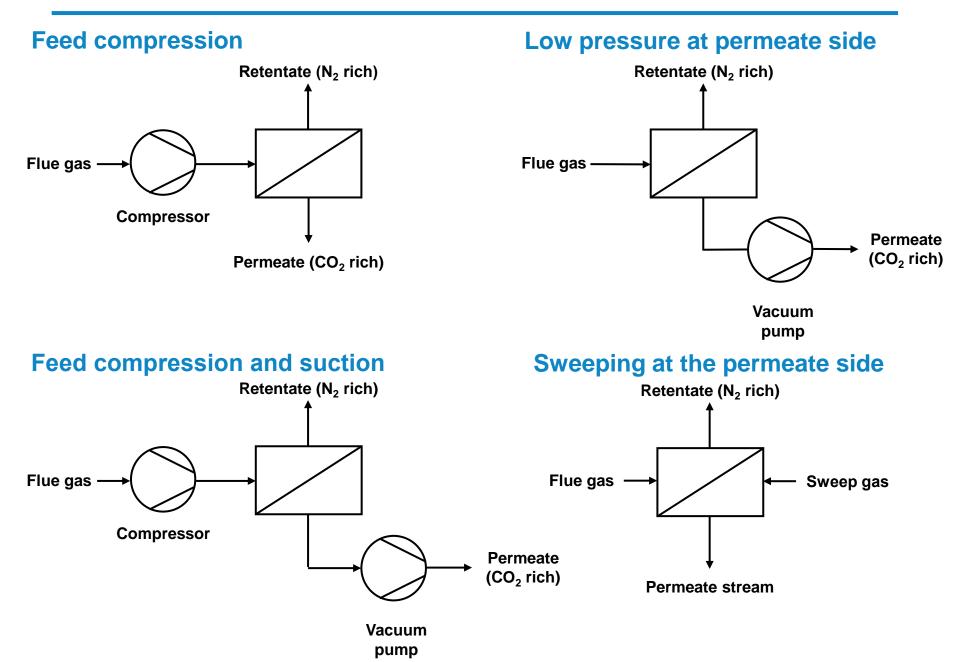
- Power plant
 - 560 kg/s flue gas
 - 1 bar, 50°C, saturated in water
 - CO₂ 13.6%, N₂ 71.2%, O₂ 3.2%
 - Contaminants (SO_x, NO_x)

How much to be captured?

- CO₂ requirements?
 - CO₂ concentration
 - Trace components

Definition of boundary conditions (II)

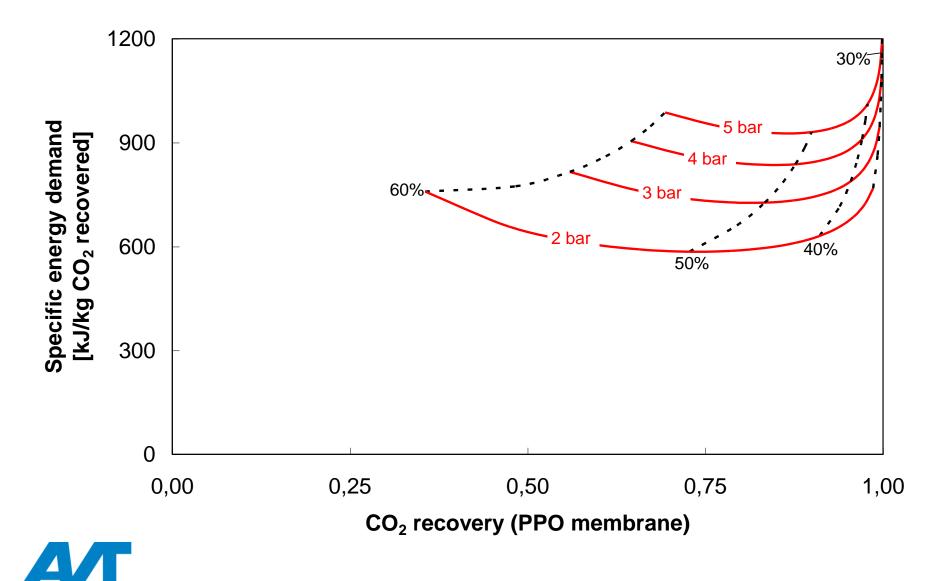
- Delivery to pipeline at 130 bar and 30°C
- Composition
 - > 95.5 mole-% CO₂
 - max. 4 mole-% of air gases (N₂, Ar, O₂)
- 2 scenarios for O₂ content
 - High purity (only 100 ppm allowed)
 - Up to 4 mole-% O₂
- SO_x and NO_x (max. 0.5 mole-% in worst case)
- Residual water content: not specified
- Optimal capture rate: 90% assumed as optimal

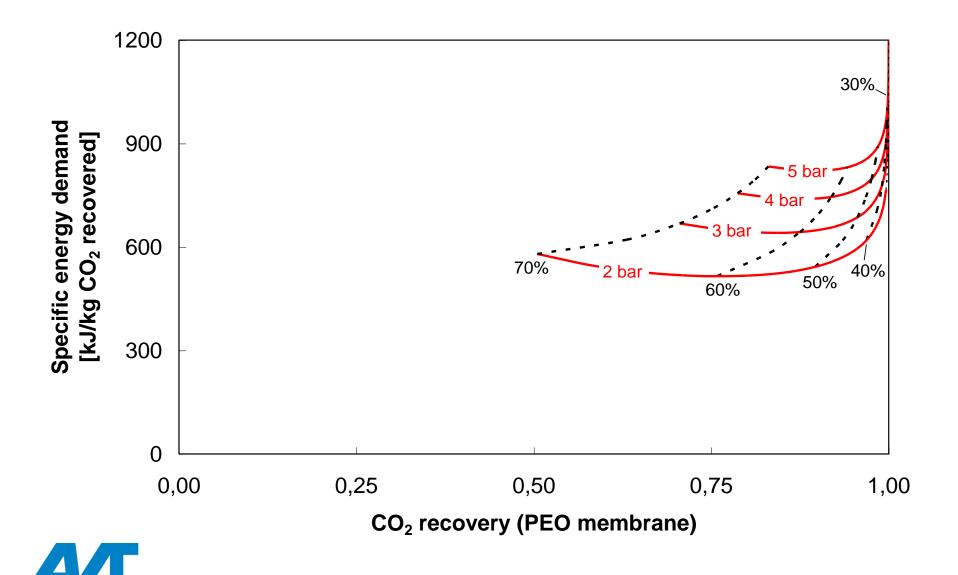

Membrane separation materials

- Ceramic membranes seem inadequate for post combustion CO₂ capture
- State-of-the-art polymers appear most suitable

	CO ₂ Permeance	CO ₂ /N ₂ Selectivity	CO ₂ /O ₂ Selectivity	CO ₂ /SO ₂ Selectivity
PPO	4.1	20	4,5	5
PEO	1.25	45	15	0.2

- Permeability H₂O >> permeability CO₂
- Permeability $SO_2 \ge$ permeability CO_2
- Mass transfer across membrane: $n_i = Q_i A_{Mem} (x_i p_F y_i p_P)$


Driving force generation (I)

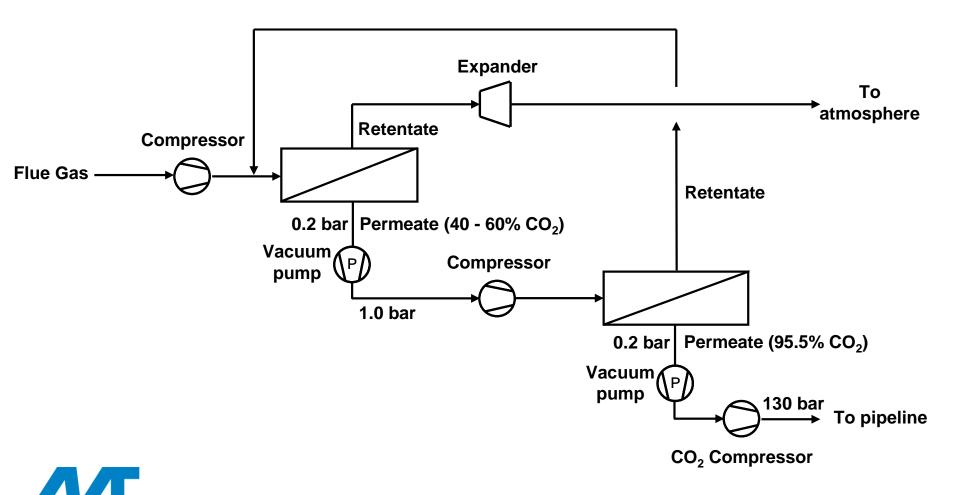

Driving force generation (II)

- Feed compression
 - Low membrane area, high energy consumption
 - No pressure limitation
- Suction at the permeate side
 - Large membrane area, lower energy consumption
 - Pressure limit at about 200 mbar
- Feed compression in conjunction with suction
 - Combines advantages of feed compression and suction
 - Most likely concept to generate driving force
- Sweeping
 - Only applicable in combination with vacuum on the permeate side
 - Process steam no option for sweeping at the permeate side

Single-stage membrane system (PPO membrane)

Single-stage membrane system (PEO membrane)

Summary single-stage membrane processes


- Trade-offs
 - CO₂ enrichment, CO₂ recovery and energy requirement
- O₂ and SO₂ enrich in CO₂

=> additional treatment to achieve low SO_2 and O_2 content

Single-stage process works for enrichment

=> Further enrichment / purification by 2nd membrane stage

Process flowsheet

Two-stage membrane processes

- Results two-stage processes
 - PPO membrane in 1st stage / PEO membrane in 2nd stage
 - 95.5% CO₂
 - 90% CO₂ recovery from the flue gas

Feed pres. 1 st /2 nd stage	Energy [kJ/kg]	Area [10 ⁵ m ²]	O ₂ [%]	SO ₂ [ppm]
3 bar / 4 bar	1910	7	1.8	510
4 bar / 4bar	1940	5	1.8	510

 \Rightarrow Impossible to reach low O₂ residual content

- Membrane gas separation for post combustion CO₂ capture is an emerging technology
- Polymer membranes are presently the best choice
- Feed compression in conjunction with suction at the permeate side appears the best option to generate the driving force
- Single-stage processes are unable to achieve 95.5% CO₂ in conjunction with reasonable CO₂ recoveries
- Two-stage processes reach 95.5% CO₂, but fail to meet strict concentration limits of co-captured species
- Membrane-hybrid processes may achieve low residual contents of co-captured species

This study is part of the NanoGLOWA project (NMP3-CT-2007-026735), which has been financially supported by the EU Commission within the thematic priority NMP of the Sixth Framework Program.