10th International Scientific Conference on "Energy and Climate Change" 2ND Day - Scientific Sessions

KOSTIS PALAMAS BUILDING, ATHENS, GREECE 11-13 October 2017

APPLICATION OF HERON DECISION SUPPORT TOOL FOR THE GREEK CASE (TRANSPORT)

Dr. Popi KONIDARI

Research fellow, NKUA - KEPA

National and Kapodistrian University of Athens - Energy Policy and Development Centre (KEPA)

Outline

- Introduction
- Methodology
- Software HERON DST
- Application
- Conclusions

Source: https://www.theguardian.com/environment/2015/apr/27/hand-overcontrol-of-my-fridge-to-an-energy-company-no-thanks-say-brits

Introduction

- Problem: The reduction of the observed deviation in EE targets due to end-users behavioral barriers
- **Concept:** Quantification of the qualitative information concerning end-users' behavioral barriers in energy efficiency modelling
- **Response:** Development of HERON -DST

HERON - DST

- Facilitates policy and decision makers in
 - Quantification of the impact of barriers
 - Demonstration of the deviation in EE targets
 - Selection of the optimum combination of EE technologies and practices
 - Minimization of the negative impact of end-users behavior in the implementation of Energy Efficiency scenarios

Methodology of HERON - DST

- Six steps four based on Analytical Hierarchy Process (AHP)
 - Step 1: Mapping, categorization and merging behavioral barriers
 - *Step 2:* Development of the AHP tree and matrices
 - Step 3: Calculation of weight coefficients
 - Step 4: Definition and calculation of Impact Factors (I) of barriers
 - *Step 5:* Linkage of Impact factors with input drivers
 - Step 6: Incorporation of the Total Impact factors in the forward-looking EE modelling

Steps 1 & 2

AHP tree and matrices

6

Barriers

	$I_{s1} = W_{S-C}$	_{-E} *W _s *W _{s1}		
Туре	Name of barrier	Function		
Social	Low satisfaction with public transport/lack of trust	$I_{s1} = W_{S-C-E} * W_{s} * W_{s1}$		
Social	Concerns of vehicle reliability/Hesitation to trust new technologies	$I_{s2} = W_{S-C-E} * W_{s} * W_{s2}$		
Social	Heterogeneity of consumers	$I_{s3} = W_{S-C-E} * W_s * W_{s3}$		
Social	Suburbanisation trends/Low density	$I_{s4} = W_{S-C-E} * W_{s} * W_{s4}$		
Social	Mobility problems (Vulnerability of pedestrians / Lack of adequate space for walking/ Cruising traffic/ Parking problems)	$I_{s5} = W_{S-C-E} * W_s * W_{s5}$		
Social	Inertia	$I_{s6} = W_{S-C-E} W_{s} W_{s6}$		
Cultural	Car as a symbol status and group influence	I _{c1} = W _{S-C-E} *W _c *W _{c1}		
Cultural	Habit and social norm of driving, car ownership and use	$I_{c2} = W_{S-C-E} W_{c} W_{c2}$		
Cultural	Cycling is marginalized	$I_{c3} = W_{S-C-E} W_{c} W_{c3}$		
Cultural	Attitude (Attitude-action gap /Bounded rationality/Buyer attitude)	$I_{c4} = W_{S-C-E} W_{c} W_{c4}$		
Educational	Lack of knowledge/information (on green transport/ULEVs/EVs - fuel economy)	$I_{E1} = W_{S-C-E} W_E W_E$		
Educational	Low/Limited awareness (of impact of EE in transport /towards eco- driving/benefits-environmental impacts)	$I_{E2} = W_{S-C-E} W_E W_E$		
Educational	Confusion about car and fuel costs (conventional vs ULEVs/Evs) – Negative perception	$I_{E3} = W_{S-C-E} W_E W_E$		
Educational	Lack of certified instructors/examiners/technicians/professionals for eco- driving /integrated transport/mobility/ ULEVs/Evs	$I_{E4} = W_{S-C-E} * W_E * W_{E4}$		
National and Kapodistrian University of Athens - Energy Policy and Development Centre (KEPA) 7				

KEPA

Barriers

Economic	Lack of finance/Limited financial incentives for new vehicles/ULEVs/public transport/ - Inefficient or absent fiscal measures for supporting EE	$I_{EC1} = W_{EC} * W_{EC1}$
Economic	Limited infrastructure investment (road/train/cycling) – for public transport	$I_{EC2} = W_{EC} * W_{EC2}$
Economic	Low purchasing power of citizens/Financial crisis	$I_{EC3} = W_{EC} * W_{EC3}$
Economic	High cost/Low cost competitiveness of electric vehicles - High cost of batteries for electric vehicles	$I_{EC4} = W_{EC} * W_{EC4}$
Economic	Payback period of fuel efficient vehicles	$I_{EC5} = W_{EC} * W_{EC5}$
Economic	Negative role of Investment schemes/employee benefits encourage transport EE	$I_{EC6} = W_{EC} * W_{EC6}$
Institutional	Administrative fragmentation and lack of integrated governance	$I_{11} = W_1 * W_{11}$
Institutional	Transport EE on the Government Agenda/priorities	$I_{12} = W_1 * W_{12}$
Institutional	Barriers to behavior change due to problems with infrastructure/public transport services (Inefficient urban/public transport infrastructure and planning/ Undeveloped cycling/walking infrastructure/ Lack of support for rail transportation/Limited rail infrastructure/ Undeveloped infrastructure for recharging of EV)	I ₁₃ = W ₁ * w ₁₃
Institutional	Lack or limited policies to support behavior change on specific transport issues (Lack of national strategy for bike and pedestrian mobility/ Limited policy on freight efficiency/city logistics	$I_{14} = W_1 * W_{14}$
Institutional	Limited/complex funding in urban public transport	$I_{15} = W_1 * W_{15}$
Institutional	Barriers to behavior change due to no policy support to technological issues/research needs (Immature status of developing technologies for EVs/ULEVs - Range of distance travelled between charges for EVs)	$I_{16} = W_1 * W_{16}$
Institutional	Contradicting policy goals (particularly road/car-oriented planning)	$I_{17} = W_1 * W_{17}$
Institutional	Administrative fragmentation and lack of integrated governance	$I_{18} = W_1 * W_{18}$
National and	National and Kapodistrian University of Athens - Energy Policy and Development Centre	e (KEPA) 8

National and Kapodistrian University of Athens KEPA

Steps 5 & 6 (1/2)

Total Impact factors and EE modelling

- Calculation of Total Impact (TI) factor on input drivers (EE technologies)
 - Link separately each driver with its relevant barriers
 - Sum up the impact factors of these barriers into TI
- Calculation of deviations

 $p_{b} = \pm p * (1 - TI) \text{ or } p_{b} = \pm p * (1 - TI_{oI})$

- p_b amount after considering barriers (in %)
- p amount without considering barriers (in %)
- TI Total Impact of barriers for one input driver (unit-free)
- TI_{ol} Total Impact of barriers for set of input drivers (unit-free)

Steps 5 & 6 (2/2)

Total Impact factors and EE modelling

• Calculation of reduced Impact factors

$$I_{t,i} = I_{o,i} (1 - (0,2/15)*t)$$

- I_{t,i} Impact factor of barrier i in year t after implementing a policy instrument (or instruments) that addresses it
- I_{o,i} Impact factor of barrier i in year t=0
- t time in years
- 15 years for the time interval 2015-2030
- 0,2 or 20% the reduction share after 15 years (UNEP, 2016)

Hellenic transport sector

- Accounts of 37% of the total final energy consumption
- Its highest energy saving potential is in passenger and freight road transport (private cars, trucks)
- Its contribution to the national EE target of 18,4Mtoe is by restricting its final energy consumption by year 2020 to 6,7TWh

End-use technologies (1/2)

- Cars (private and public)
 - vehicles meeting EURO 5 standards, CNG and LPGpowered private passenger vehicles, electric vehicles (including motorcycles, bicycles, heavy vehicles), LPG vehicles and bi-fuel natural gas vehicles (municipal fleet)
- Buses
 - natural gas public transport buses

End-use technologies (2/2)

- Light trucks (private and public)
 vehicles meeting EURO 5 standards
- Infrastructure
 - vehicle recharging points (RES-powered and/or conventional)

Developing scenarios (1/8)

- BAU
 - looks into current possible trends until 2030 with policy measures already decided or in place
 - Planning policy instruments
 - Regulatory policy instruments
 - Financial policy instruments
 - Dissemination/awareness policy instruments

Developing scenarios (2/8)

• Energy efficient scenario (EE TO)

- forward-looking path towards an ideal situation

(achieve maximum possible amount of energy savings based on the national potential through a combination of technologies)

– Sub-scenarios

- Penetration of electric and hybrid vehicles in passenger and freight transport (where applicable);
- Eco-driving in freight and passenger transport;
- Modal shift in freight and passenger transport;
- Use of biofuels in freight and passenger transport;
- More efficient vehicles in passenger and freight transport

Improved policy mixture (compared to BAU additional policy instruments)

Developing scenarios (3/8)

Sub-scenarios	Policy assumptions	Policy instruments
Electric and hybrid vehicles	- 25% penetration of HEVs by 2030	Grants of 3000-8000 Euros for the purchase of HEVs (YPEKA, 2012)
	- 7% penetration of EVs by 2030	C_{rant} of up to 10% of the price for the
	- 10% penetration of PHEVs by 2030	purchase of PHEVs and BEVs (YPEKA, 2012)
		Campaigns for raising awareness towards electric vehicles
		Extension of the grid of e-mobility (charger points, etc.)
Eco-driving	10% energy savings from eco-driving in road transport (private vehicles, buses and trucks)	Awareness campaigns about eco- driving
		Inclusion of eco-driving as part of education of new drivers
Modal shift	30% shift from road to rail by 2030	Extension of rail grid
Use of biofuels	 10% by 2020 and 20% by 2030 penetration of biofuels in road transport, and 	
	- 5% penetration of biofuels by 2030 in aviation	
More efficient vehicles	50% more efficient private cars and trucks (petrol and diesel) by 2030	

Software HERON Decision Support Tool

Developing scenarios (4/8)

- Energy efficient scenario (EE T1)
 - forward-looking path of EE TO scenario but after incorporating the impact of the barriers linked with the end-users behaviour
 - Same sub-scenarios
 - Same policy mixture with EE TO

Developing scenarios (5/8)

Sub-scenarios	Policy assumption(s)	DST outcome (after considering impact of barriers)	Policy instrument(s) that focus on achieving the policy assumption
Electric and hybrid vehicles	 25% penetration of HEVs by 2030 7% penetration of EVs by 2030 10% penetration of PHEVs by 2030 	 16,102% penetration of HEVs by 2030 4,508% penetration of EVs by 2030 6,441% penetration of PHEVs by 2030 	Grants of 3000-8000 Euros for the purchase of HEVs (YPEKA, 2012) Grant of up to 10% of the price for the purchase of PHEVs and BEVs (YPEKA, 2012) Campaigns for raising awareness towards electric vehicles Extension of the grid of e-mobility (charger points, etc.)
Eco-driving	10% energy savings from eco-driving in road transport (private vehicles, buses and trucks)	7,642% energy savings from eco- driving in road transport (private vehicles, buses and trucks)	Awareness campaigns about eco- driving Inclusion of eco-driving as part of education of new drivers
Modal shift	30% shift from road to rail by 2030	17,494% shift from road to rail by 2030	Extension of rail grid
Use of biofuels	 10% by 2020 and 20% by 2030 penetration of biofuels in road transport, and 5% penetration of biofuels by 2030 in aviation 	 7,762% by 2020 and 15,345% by 2030 penetration of biofuels in road transport, and 3,836 % penetration of biofuels by 2030 in aviation 	
More efficient vehicles	50% more efficient private cars and trucks (petrol and diesel) by 2030	41,125% more efficient private cars and trucks (petrol and diesel) by 2030	

Developing scenarios (6/8)

- Energy efficient scenario (EE T2)
 - forward-looking path of improving the situation of EE T1 scenario, through the most promising combination of three technologies/actions
 - Electric and hybrid vehicles Modal shift More efficient vehicles (based on DST).

Developing scenarios (7/8)

- Energy efficient scenario (EE T3)
 - forward-looking path of improving the situation of EE T1 scenario, through the most promising combination of three technologies/actions
 - Electric and hybrid vehicles Use of biofuels more efficient vehicles (based on DST).

Developing scenarios (8/8)

- Energy efficient scenario (EE T4)
 - forward-looking path of improving the situation of EE T1 scenario, through the most promising combination of three technologies/actions
- More efficient vehicles Eco-driving Use of biofuels (based on DST).

LEAP outcomes

Conclusions

- HERON DST provides
 - Common sets of barriers, but each country evaluates differently the impact of barriers
 - Deviations from the EE target(s) and options for reducing them according to preferences per examined case
 - Outcomes in Excel for incorporating in energy modelling
 - Basis for research in a new area

Thank you

Dr. Popi KONIDARI Tel.: 0030 210 72 75 830 e-mail: pkonidar@kepa.uoa.gr

National and Kapodistrian University of Athens - Energy Policy and Development Centre (KEPA)