

Funded by the Horizon 2020 Framework Programme of the European Union

Forward-looking socio-economic research on Energy Efficiency in EU countries GA 649690

COMPARATIVE ANALYSIS ON HERON RESEARCH OUTCOMES

Aliki-Nefeli MAVRAKI, MSc.

NKUA - KEPA

Contents

- The HERON puzzle
- Comparative analysis with HERON – DST on
 - barriers
 - technologies
 - policy mixtures
- Conclusions

The HERON puzzle

Comparative analysis

The analysis

- –Provides **commonalities** and **differences** among the cases in study.
- -Shows which are the common advantages in confronting barriers linked to end-users behavior.
- –Identifies the framework that can be implemented at any level in order to reach the EE targets.

ANALYSIS ON THE BARRIERS WITH THE USE OF HERON-DST BUILDINGS

Social barriers in buildings

Cultural barriers in buildings

Educational barriers in buildings

Economic barriers in buildings

Institutional barriers in buildings

Impact of "Institutional barriers" among the HERON countries Security of fuels supply Disruption/Hassie factor Barrier to behavior change due to problematic Implementation Network (IN)/governance framework (Inadequate... Lack of data/information-diversion of management Poor compliance with efficiency standards or construction standards/ Technical problems/ Performance gap/mismatch Building stock characteristics/aging stock/Historical preservation Legislation issues (Lack of relevant legislation/Lack of regulatory provision/Change of legislation for local/regional... Split incentive 0,01 0,02 0,03 0,04 0,05 0,06 0

UK SR IT GR GE ES BG

I I 🗆 I 🔪 I V

Observations on building barriers

- 1. Highest value of impact: "Social-Cultural-Educational" / Lowest value of impact: "Institutional"
- 2. Impact of current policy mixtures on barriers: Estonia and Serbia have the largest difference between their frequencies of high and low impact, while Germany and Italy have similar to each other.

ANALYSIS ON THE BARRIERS TRANSPORT

Social barriers in transport

Impact of "Cultural barriers" among the HERON countries					
Attitude (Attitude-action gap /Bounded rationality/Buyer attitude)					
Cycling is marginalized					
Habit and social norm of driving, car ownership and use					
Car as a symbol status and group influence					
UK SR IT	O 0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,18 GR ■ GE ■ ES ■ BG				

Educational barriers in transport

Economic barriers in transport

Institutional barriers in transport

Observations on the transport barriers

- Highest value of impact: "Cultural" & "Economic" / Lowest value of impact: "Social"
- Impact of current policy mixtures on barriers: Estonia has the largest difference between its frequencies of high and low impact.
 Bulgaria did not have the lowest impact value on any barrier.

ANALYSIS ON THE TECHNOLOGIES BUILDINGS & TRANSPORT

Combination of technologies – Most promising policy mixtures – *buildings*

	Countries									
	BG	ES	GE	GR	IT	SR	UK			
Technologies	Building Shell Improvement	Building Shell Improvement	Building Shell Improvement	Building Shell Improvement	Efficient heating	Building Shell Improvement	Efficient heating			
	Efficient lighting	Efficient lighting	Efficient lighting	Efficient cooling	Efficient cooling	Efficient heating (heat pumps & heating appliances)	Efficient cooling			
	Efficient appliances	Efficient appliances	Efficient appliances	Efficient appliances	Heat pumps	Efficient appliances	Efficient lighting			
Priority technology	Building Shell Improvement	Building Shell Improvement	Efficient lighting	Building Shell Improvement	Heat pumps	Building Shell Improvement	Efficient heating			

Observations on buildings policy mixtures

• <u>"Building Shell Improvement"</u> is linked with a considerable set of barriers that includes common barriers with other EE technologies.

The minimization of barriers for "Building Shell Improvement" affects strongly the penetration of other EE technologies.

• <u>"Efficient appliances"</u> are after the "Building Shell Improvement" the next most frequently encountered technology in these combinations.

Combination of technologies – Most promising policy mixtures – *transport*

	Countries									
	BG	ES	GE	GR	IT	SR	UK			
Technologies	Electric & hybrid vehicles	Electric & hybrid vehicles	Electric & hybrid vehicles	Electric & hybrid vehicles	Electric & hybrid vehicles	Use of biofuels	Electric & hybrid vehicles			
	Eco – driving	Eco – driving	Modal shift	Modal shift	Modal shift	Eco – driving	Use of biofuels			
	More efficient vehicles	More efficient vehicles	More efficient vehicles	More efficient vehicles	Heat pumps	More efficient vehicles	More efficient vehicles			
Priority technology	Electric & hybrid vehicles	Electric & hybrid vehicles	Modal shift	Electric & hybrid vehicles	Use of biofuels	Use of biofuels	Electric & hybrid vehicles			

Observations on transport policy mixtures

 <u>"Electric & hybrid vehicles"</u>, <u>"More efficient</u> <u>vehicles"</u> and <u>"Use of biofuels"</u> are most frequently encountered technologies/ actions in these combinations.

• <u>"Electric & hybrid vehicles"</u> are linked with a considerable set of barriers that includes common barriers with other EE technologies.

ANALYSIS ON POLICY MIXTURES BUILDINGS & TRANSPORT

in buildings

Criteria		Performance of policy mixture							
			GE	GR	IT	SR	ПК		
Direct contribution to GHG emission reductions (0,833)		1	GL	GIN		↑	OR		
Indirect environmental effects (0,167)		\uparrow				1			
Environmental performance (0,168) - A		1				1			
Cost efficiency (0,474)		e e	↑	1	↑		1		
Dynamic cost efficiency (0,183)	↑	0		0			0		
Competitiveness (0,085)		0	↑	0	0	0	0		
Equity (0,175)		1				-			
Flexibility (0,051)	\uparrow			0	0	0	0		
Stringency for non-compliance (0,032)	0	0	0	0	0	0	0		
Political acceptability (0,738) - B		~	↑		\uparrow				
Implementation network capacity (0,309)	0		0		0	0	0		
Administrative feasibility (0,581)	Ŷ	0	0	↑	0	о	0		
Financial feasibility (0,110)	↑		Î	0	Ŷ	0	1		
Feasibility of implementation (0,094) - C			↑	0	↑	0	↑		
		$\mathbf{X}_{\mathbf{A}}^{\prime}$							

Observations on buildings policy mixtures

- The assumed policy mixtures for the preferable scenarios have the following advantages:
 - They support the competitiveness of the country
 - They offer flexibility to the end-users
 - Their technological options for promoting EE are cost-efficient

in transport

Criteria		x	N.	0			
		ES	GE	GR	IT	SR	UK
Direct contribution to GHG emission reductions (0,833)		Ţ	↑	1		Ŷ	1
Indirect environmental effects (0,167)		6	1	↑	C	1	\uparrow
Environmental performance (0,168) - A		1	↑	1		↑	\uparrow
Cost efficiency (0,474)	1	0		0	1		0
Dynamic cost efficiency (0,183)	↑	0	1	0	1	↑	0
Competitiveness (0,085)		0		0	0	↑	0
Equity (0,175)	0	\uparrow	1	1		↑	0
Flexibility (0,051)	1	0	0		0	0	0
Stringency for non-compliance (0,032)		0		0	0	0	0
Political acceptability (0,738) - B	1	1		1		↑	\uparrow
Implementation network capacity (0,309)		0			0	1	0
Administrative feasibility (0,581)	0	0		1	0	↑	0
Financial feasibility (0,110)		0		0	0	↑	0
Feasibility of implementation (0,094) - C		0		0	0	1	0

Observations on transport policy mixtures

- The assumed policy mixtures for the preferable scenarios have the following advantages:
 - They are expected to deliver very good environmental outcomes due to their performance in the first criterion (less GHG emissions/ less amount of consumed energy)
 - They have high political acceptability
 - They are likely to be feasible for implementation

Conclusions

- Commonalities & differences in HERON countries:
 - Majority of barriers with high impact fall under the Social Cultural Educational category.
 - Majority of barriers with **low impact** fall under the **Institutional** category.
 - "Building Shell Improvement" and "Electric/ Hybrid vehicles are the EE technologies need to be promoted.
- Common advantages in EU:
 - A set of common barriers for all EU MS would allow the monitoring of progress in the implementation of EE policies.
 - A "barrier registry" would demonstrate over time how and if the implemented policies have confronted the identified barriers.
- Framework
 - EU policies should incorporate the deviations caused by the endusers behavior in their EE policy making.

THANK YOU FOR YOUR ATTENTION! Aliki-Nefeli MAVRAKI

Research Associate

Energy Policy and Development Centre (KEPA) National and Kapodistrian University of Athens anmavraki@uoa.gr +30 210 727 5732

